

UEL Block F Transportation Assessment

Draft Report #2 -Submitted with Rezoning Resubmission

Prepared for Musqueam Capital Corp.

Date April 8, 2015

Prepared by

Bunt & Associates

Project No. 4912.01

TABLE OF CONTENTS

1.	INTR	ODUC	TION	. 1
2.	LOC	AL COI	NTEXT AND POLICY REVIEW	. 3
	2.1	Study A 2.1.1 2.1.2 2.1.3 2.1.4	rea Travel Characteristics and Infrastructure Walking Cycling Transit Automobile	3 5 7
	2.2	Policy R 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Constant Service Servi	11 12 12 12 13
3.	EXIS 3.1 3.2 3.3 3.4 3.5 3.6	Study A Mode S Norma Peak Ho Peak Ho	CONDITIONS 	15 15 17 18 18
4.	PROI 4.1 4.2	Street N 4.1.1 4.1.2 4.1.3	DEVELOPMENT Network and Site Access Road A Road B Traffic Calming and Accommodation of Cyclists	23 23 25 26
	4.3 4.4	4.2.1 4.2.2 Loading	Residential Parking Non-Residential Parking able Transportation Features Bicycle Parking and End-of-Trip Facilities Car-Share Vehicles	27 28 29 29 30 30
		4.4.3 4.4.4	Ride-Share Programs Multi-Modal Access Guide	

5. F	JTURE TRAFFIC OPERATIONS	
5.	1 Capacity Analysis Scenarios	
5.	2 Background Traffic Growth	
	5.2.1 Student Housing Vehicle Trip Generation	
	5.2.2 New Vehicle Trips per year	
	5.2.3 Screenline Volume Distribution	
	5.2.4 Percentage Growth	
	5.2.5 Vehicle Trips from Norma Rose Point Elementary School	
	5.2.6 Summary	
5.	3 Site Vehicle Trip Generation and Distribution	
5.	4 Future Traffic Analysis (2030)	
	5.4.1 Background 2030 Conditions	
	5.4.2 Total 2030 Conditions	
5.	5 Construction Truck Movements	
6 S	JMMARY	

APPENDIX B Synchro Model Output – Future

EXHIBITS

Exhibit 1.1: Site Location	2
Exhibit 2.1: Existing Walking Destinations	4
Exhibit 2.2: Existing Cycling Routes and Infrastructure	6
Exhibit 2.3: Transit Routes and Facilities	8
Exhibit 2.4: Existing Laning Configurations and Traffic Control	10
Exhibit 2.5: Mode Split	14
Exhibit 3.1: Existing Vehicle Volumes	16
Exhibit 3.2: Existing Intersection LOS Summary	20
Exhibit 4.1: Proposed Site Plan	24
Exhibit 5.1: Background 2030 AM and PM Peak Hour Volumes	36
Exhibit 5.2: Site Trip Distribution	39
Exhibit 5.3: Site Peak Hour Vehicle Volumes	40
Exhibit 5.4: Future Westbound Volumes along University Boulevard	42
Exhibit 5.5: Future Eastbound Volumes along University Boulevard	42
Exhibit 5.6: Total 2030 AM and PM Peak Hour Volumes	43
Exhibit 5.7: 2030 Background Intersection LOS Summary	46
Exhibit 5.8: 2030 Total Intersection LOS Summary	48

UEL Block F Master Plan Transportation Assessment - Draft Report #2 bunt & associates | Project No. 4912.01 April 8, 2015

TABLES

Table 3.1: Study Area Intersections	
Table 3.2: Weekday Mode Split	
Table 3.3: Existing Traffic Operations	21
Table 4.1: Proposed Development Breakdown	23
Table 4.2: Comparison of Market-Residential Parking Rates	27
Table 4.3: Average Auto Ownership for Multi-Family Residential Buildings in UBC	
Table 4.4: Comparison of Non-Residential Parking Rates	
Table 4.5: Proposed Bicycle Parking Supply Ratios	
Table 5.1: Student Housing Trip Generation	
Table 5.2: Elementary School Morning Peak Hour Distribution	
Table 5.3: Site Vehicle Trip Rates	
Table 5.4: Site Vehicle Trip Estimates	
Table 5.5: Trip Distribution Pattern	
Table 5.6: Background 2030 Conditions	
Table 5.7: Total 2030 Conditions	
Table 5.8: Total 2030 Conditions - Acadia Rd & Road B Roundabout	

1. INTRODUCTION

In 2008, through settlement agreements with the Province of British Columbia, the Musqueam First Nation acquired free title to a 22 acre parcel referred to as 'Block F' in the University Endowment Lands (UEL) located on the south side of University Boulevard between the existing developments along Acadia Road and the University Golf Course. **Exhibit 1.1** shows the location of the development site.


Extensive master planning and community consultation efforts were undertaken since 2008, and Musqueam submitted a formal rezoning application to develop a mixed-use project on this parcel in December 2013.

Since the submission of the rezoning application, UEL has conducted an extensive review of the proposed Master Plan and provided comments to the applicant team. Over the last 15 months, the applicant team have worked closely with UEL and other stakeholders to address the comments that were raised with regards to the original rezoning application that was submitted in December 2013. The applicant team is now submitting a revised rezoning application, which addresses the vast majority of the comments that were received from the original application.

Bunt & Associates Engineering (B.C) Ltd was commissioned by Musqueam Capital Corp. (Musqueam) to undertake a Transportation Assessment to support the proposed master plan development at Block F. This report supersedes the Draft Transportation Assessment report that was submitted back in August 2013 to support the original rezoning application.

This report has been set out in the following manner:

- Section 2 provides a review of the study area travel characteristics, planning policy, as well as neighbouring development plans that influence future travel characteristics in the area;
- Section 3 examines the existing transportation system, modal splits, and traffic operations in the local network;
- Section 4 outlines the development contents and specifically the transportation aspects including parking provisions;
- Section 5 establishes the future vehicle projections in the study street network, taking into consideration of background traffic growth in the area and the development vehicle movements. It also examines the likely trip distribution for the proposed development and assesses the effect of the development traffic on the study street network.

Exhibit 1.1 Site Location

2. LOCAL CONTEXT AND POLICY REVIEW

This section provides an overview of the existing infrastructure in the study area as well as an outline of transportation policies and plans relevant to the proposed development site.

2.1 Study Area Travel Characteristics and Infrastructure

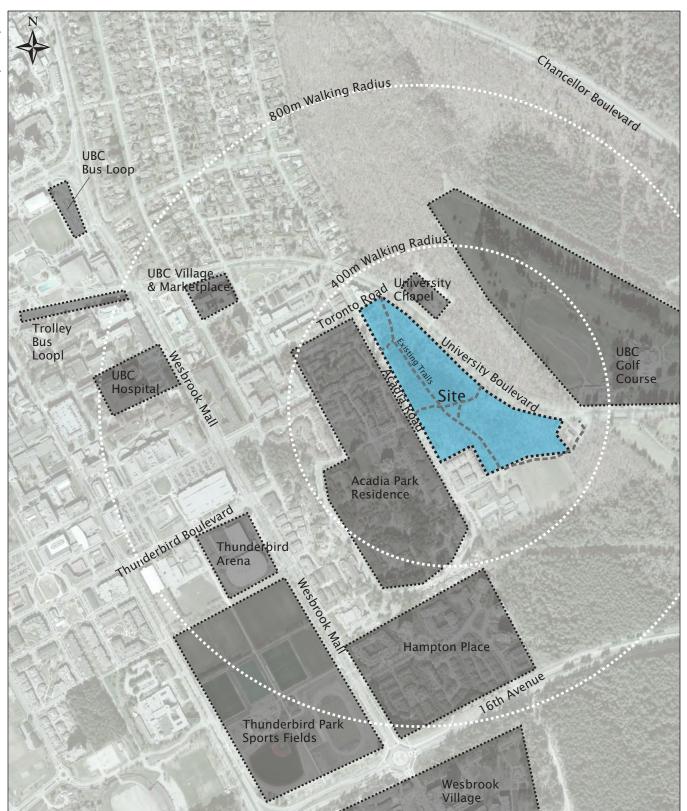
2.1.1 Walking

Walking is an everyday activity, whether part of a single-purpose trip or linked with transit and driving. Typically, people are willing to walk up to 15 minutes for certain activities (i.e. work, school, recreation activities) with 400 to 800 metres being typical average distances for such trips (transit, shopping, etc.).

Exhibit 2.1 highlights the various destinations within a comfortable walking distance of the development site and clearly demonstrates that residents, employees and visitors can access a wide range of amenities including commercial/retail services, restaurants, open space, and a hospital.

Bus stops along University Boulevard, Wesbrook Mall and Acadia Road are located within a 500-metre walking distance from the development site, providing convenient transit connections to areas throughout UBC and Vancouver.

Key destinations within close proximity to the site include: UBC Hospital, University Village, University Golf Course, as well as several churches, schools, and daycare centres.


Located in the southeast quadrant of the University Boulevard & Western Parkway intersection are the University Village and University Marketplace developments, which offer a variety of commercial/retail stores and restaurants.

Block permeability is adequate within the vicinity of the site which should further encourage walking as an activity and mode of transportation for the development site. While the street network along Acadia Road is fairly circuitous, it is supplemented with a system of lanes and pathways which help enhance the pedestrian network. As part of the future master plan, a well connected street network will be provided, enhancing pedestrian connections between University Boulevard and Acadia Road.

Decommissioning and redevelopment of the Acadia Park Courts on UBC may have some implications on the pedestrian routes available to/from the development site in the future. However, it is expected that any future redevelopment of Acadia will continue to follow best practices in terms of providing pedestrian accessibility to future residents in the area and adjacent developments.

Sidewalks are provided on various streets nearby the site, with boulevards (buffer strips) also available on many of the streets within the study area. Sidewalks in the area are generally in adequate condition and vary in width from 1.2 m to 1.8 m. Boulevards (buffer strips) in the study area, which provide adequate space for vehicle door swings and create comfortable walking spaces, vary in width from 2.5m to 3.9m.

S:\PROJECTS\4912-01 UEL Block F 2013\Deliverables\Draft Reports\Graphics

Exhibit 2.1 Existing Walking Destinations

bunt

&associates

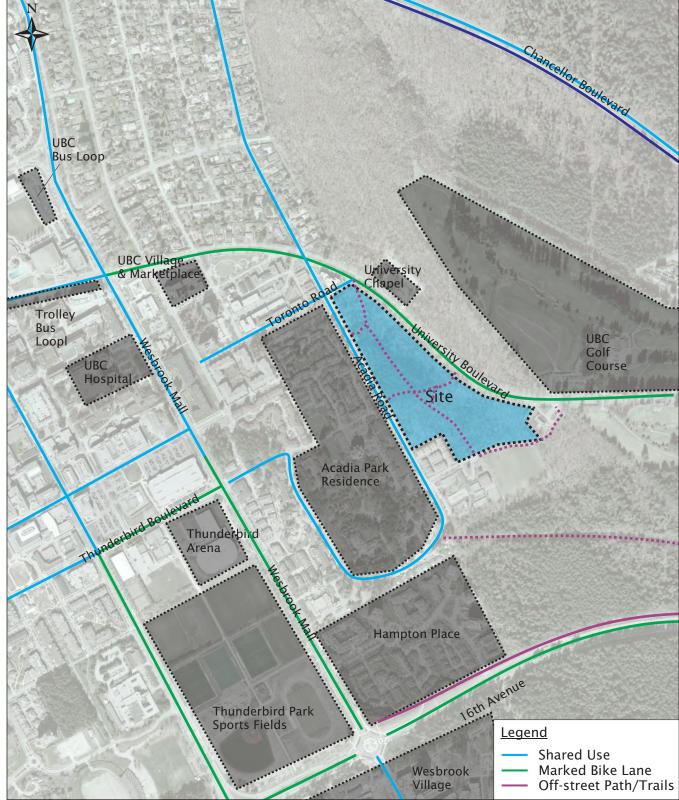
UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS The exceptions in the neighbourhood are the site fronting sidewalks on Acadia Road and Toronto Road, neither of which have buffers. The lack of buffer space results in door swing from parked vehicles intruding into the pedestrian sidewalk space. As part of the master plan development, sidewalks along the perimeter of the parcel will be upgraded to provide sufficient buffer space for on-street parking, enhancing the pedestrian walking experience around the perimeter of the Block F site.

Pedestrian crosswalk facilities are located on all legs at the intersections along Acadia Road and Toronto Road, and at other major intersections nearby. In addition, signed and marked crosswalks are located at the intersections along Acadia Road at Toronto Road and Ortona Avenue.

Two trails: Sword Fern Trail (part of Iva Mann Trail) and Fairview Trail, currently bisect the development site. Given the site is located between the northern and southern sections of Pacific Spirit Regional Park, Sword Fern Trail and Fairview Trail serve as important connections to the numerous trails within the park. Connection to these trails will be maintained and enhanced as part of the master plan of Block F.

2.1.2 Cycling

Cyclists can generally travel 3 to 4 times the distance of pedestrians over a similar period of time, suggesting that a 4 to 5 kilometre trip is a reasonable travel distance for cyclists to travel to an activity. Cycling is becoming an increasingly more popular travel mode in Vancouver for work and leisure.


Improvements to cycling infrastructure in the City of Vancouver and UBC are helping make cycling more convenient and safer. While the number of cycling trips at UBC has fluctuated within the last 15 years, recent years have shown a steady increase.

The average cycling speed for commuters is about 15km/h and the average distance per journey is approximately 5km. This equates to about a 20-minute journey on average.

Exhibit 2.2 shows the cycle routes and infrastructure in the context of the development site. The site is well connected with routes on University Boulevard, Acadia Road, Toronto Road, and Fairview Lane/Avenue. University Boulevard provides an east-west link through the university and to Blanca Street, from which various routes connect throughout Vancouver.

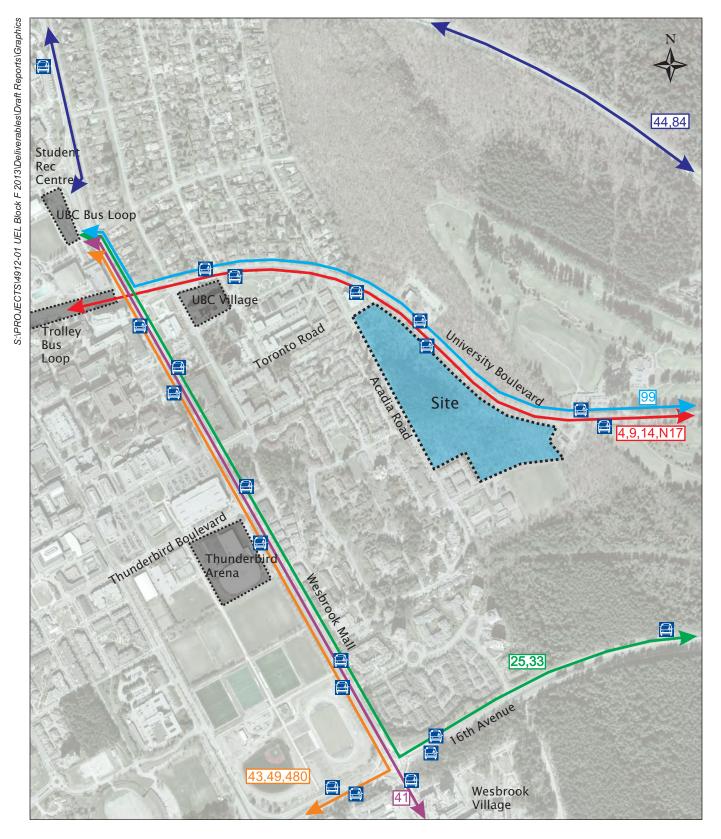
Dedicated bike lanes are provided along University Boulevard and along Wesbrook Mall (south of Thunderbird Boulevard). Bikeways along Acadia Road and Toronto Road are shared with traffic. Multi-use trails within Pacific Spirit Regional Park also provide cyclists with connections throughout the park and to Chancellor Boulevard/West 10th Avenue and West 16th Avenue, which serve as major routes to/from Vancouver.

Overall, cycling infrastructure within the vicinity of the site is very good with several key cycling routes in the campus located near the development site. Bicycle facilities can be found throughout the UBC campus, including a bicycle repair shop, 9 bicycle locker locations, 10 bicycle parking facilities, and various shower locations. In addition, bike share programs are also available for UBC staff and students.

Exhibit 2.2 Existing Cycling Routes and Infrastructure

UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS

2.1.3 Transit


The development site is well served by transit with bus stops located nearby on University Boulevard and Wesbrook Mall. A potential future rapid transit line is also planned for the Broadway corridor via University Boulevard between UBC and the Commercial Drive SkyTrain Station, which would further increase accessibility to the site. This will be discussed in further detail in the policy review section.

There are several bus routes providing a high frequency of transit service near the site, all of which provide connections to UBC and the wider transit network to various key destinations in the Lower Mainland. Bus routes with stops along University Boulevard include: 4, 9, 14, and N17.

Bus stops at the southeast and northwest corners of University Boulevard & Allison Road, 400m from the development site, provide access to the 99 B-Line. The 99 B-Line is an express bus service between UBC and Commercial Drive SkyTrain Station, providing high frequency transit service on one of the busiest transit routes outside of downtown. Bus stops along Wesbrook Mall near the UBC Hospital and Thunderbird Boulevard are within a 550 m walk, about a 7 to 8 minute walk, providing access to the following bus routes: 25, 33, 41, 43, 49, and 480. **Exhibit 2.3** summarizes the transit routes available near the site.

There was a Community Shuttle (Route #C22) that used to run between the UBC Bus Exchange and the residential streets fronting Hampton Place and Acadia Park via Acadia Road. However, the #C22 community shuttle service was replaced by a new route as part of TransLink's bus service optimization effort that was undertaken in late 2012/early 2013. The new route (#C18) now circulates a larger area of the UBC campus and no longer runs along Acadia Road. It is anticipated that transit services along Acadia Road (near Block F) will be reviewed as the population continues to grow around this area in the future with the build-out of the Master Plan.

Transit stop amenities (i.e. bus shelters, garbage/recycling bins) are currently not provided at most stops along the University Boulevard corridor. The only bus shelter that is available along University Boulevard is at the eastbound 99-B Line bus stop at Allison Road. As part of the site Master Plan, a new bus lay-by will be provided along University Blvd and there will be opportunity to incorporate a bus shelter at the new bus stop.

Exhibit 2.3 Transit Routes and Facilities

UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS

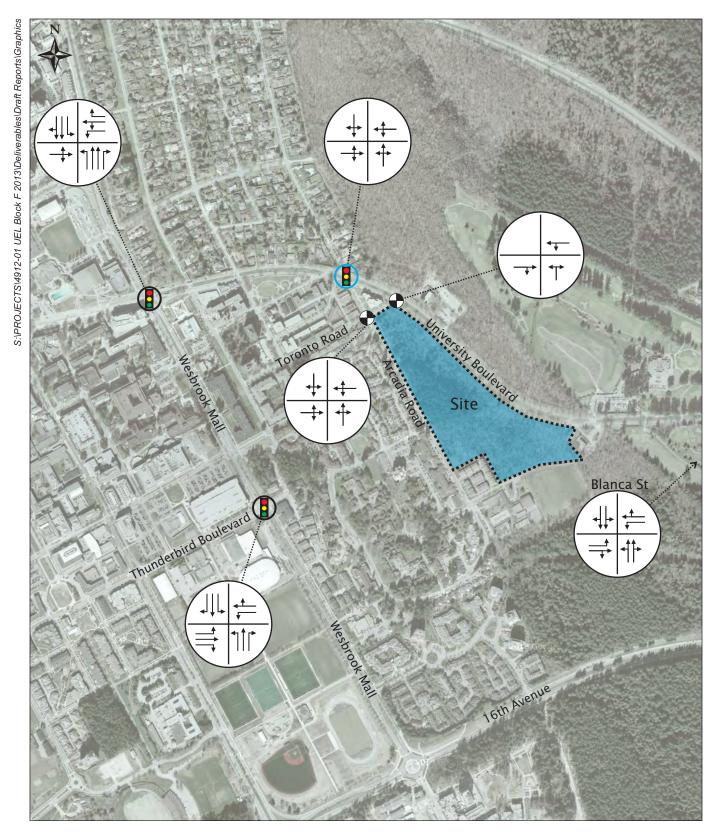
2.1.4 Automobile

The existing roadway laning and on-street parking regulations in the study street network adjacent to the development site are shown on **Exhibit 2.4**. A brief description of these streets is provided below, which focuses on their function, design characteristics and intersection controls.

University Boulevard

University Boulevard is a two-lane arterial road with a posted speed limit of 50 km/hr that borders the northeast side of the development site, serving as a major connection between UBC and Vancouver. The two travel lanes are separated by a 10-metre wide grass median that extends from Wesbrook Mall to Blanca Street. Designated as a bicycle route, both sides of University Boulevard have marked bike lanes along the curbs. In addition, parking is restricted on both sides of the road.

Intersections along University Boulevard at Wesbrook Mall and Blanca Street are controlled by traffic signals, while intersections at Allison Road and Arcadia Road are controlled by pedestrian signals. A signed and marked crosswalk is provided to allow pedestrian crossing between the University Golf Course and St. Anselm's Anglican Church.


Acadia Road

Acadia Road is a two-lane local road with a posted speed limit of 50 km/hr that borders the west side of the site, serving as a main access route to the Acadia Park residences. A 30 km/hr speed zone is located near the Norma Rose Point Elementary School. There are numerous residential driveways and lanes that intersect with this road. Several 90-degree parking pockets are also located along the west side of the road, while street parking is currently restricted on the east side.

Signed and marked crosswalks are provided at the intersection with Ortona Road and the four-way stop controlled intersection at Toronto Road.

Toronto Road

Toronto Road is a two-lane local road with a posted speed limit of 50 km/hr that provides an east-west connection between Acadia Road and Western Parkway. Bordering the north side of the development site, this road provides access to several residential lanes and driveways. Toronto Road is a traffic calmed road and parking is only allowed on the south side. Signed and marked crosswalks are provided at the intersection with Western Parkway and the four-way stop controlled intersection at Acadia Road.

Exhibit 2.4 Existing Lane Configuration and Traffic Control

UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS

2.2 Policy Review

2.2.1 Official Community Plan

The University Endowment Lands Official Community Plan (OCP), adopted in 2005, identifies the key policies and objectives to guide planning and land uses to achieve the community's visions and goals. The OCP was developed through two and a half years of information mail outs, questionnaires, public meetings and open houses, and the OCP continues to evolve as the goals and visions of the community take shape.

In 2008, Block F was included in Area D of the OCP, which is bordered by University Boulevard, Agronomy Road, Toronto Road, and Wesbrook Mall. Topics supporting the development in Block F include:

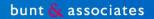
- Area D shall maintain a village-like atmosphere with a mix of high and low-rise apartments, townhouses, and retail spaces.
- As Area D currently houses higher density mixed-use projects, new developments should help optimize density levels to ensure a human-scaled streetscape environment
- There is continued community support for a grocery store in Area D.
- Area D has the potential for new mixed commercial and multi-family development.

Transportation related topics discussed in the OCP include:

- Implement traffic calming measures as needed to slow speeds, impede inter-arterial shortcutting, and direct non-local traffic to main arterial roads;
- Encourage bicycle use through requiring new multi-family developments to provide a safe, secure and convenient storage area in conjunction with exterior visitor bicycle racks. New commercial developments of significant scale should, in addition to the above requirements, provide change/shower rooms for tenant use.
- Encourage the provincial Ministry of Transportation to install new on-road bicycle lanes on all roads within the UEL under their jurisdiction;
- Through the Ministry of Transportation, University Boulevard shall be maintained as an arterial road designed to support transit and bicycle use; and,
- Maintain a proactive stance and advocate community needs directly to TransLink and UBC.

2.2.2 UBC Vancouver Campus Plan to 2030

The UBC Vancouver Campus Plan to 2030, adopted in 2010, provides the guidelines for growth at the university that "will support UBC's world-class community of scholars with a campus that physically reflects the stature of the university, provides the optimal environment for teaching, learning and research, and encourages a unique community life; and with a campus that is beautiful, functional, sustainable, cost-effective, connected to its neighbours and responsible to future generations."


While the development site does not fall within the campus plan's subject area, there are several topics in the plan that are of relevance to the proposed Master Plan:

- The student population is expected to increase from 37,600 full time equivalent (FTE) students and 6,800 graduate students to 39,700 FTE students and 11,300 graduate students; until 2017, after which it will be capped until 2030.
- Academic and research floor space is expected to increase by 1 million square feet, while student housing floor space is expected to increase by 3.6 million square feet in order to provide accommodation for 50 percent of full-time students.
- Connections to hubs and neighbourhoods throughout the campus via TransLink community shuttles.

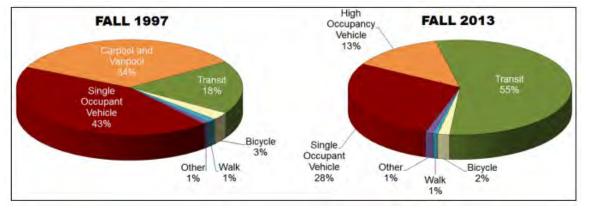
2.2.3 UBC Strategic Transportation Plan (2005)

The UBC Strategic Transportation Plan (STP) was approved in 1999 and outlines various policies to address a broad range of transportation subjects. Among the goals of the plan was to reduce automobile traffic, increase transit use and manage travel demands. An update of the document was completed in 2005 to quantify the consequences of the plan. Some of the key policies and topics outlined in the report include:

- Numerous transportation initiatives (i.e. U-Pass program, carpool programs, various bicycle facilities, and reduced parking supply) were implemented, resulting in all but one of the goals being achieved: reduce single occupancy vehicle (SOV) trips by 20% from 1997 levels.
- Automobile usage goals were revised to be based on trips per person. SOV trips per person has seen a 22% decrease since 1997, the university aims to reach a 30% reduction.
- UBC and TransLink have plans to provide Community Shuttle service covering the entire campus.
- Increase the provision of bicycle lanes and end-of-trip facilities (i.e. bike storage, lockers and showers).
- Improve safety at crossings through implementation of raised crosswalks, lighting, and audible and tactile indicators.

- Manage the commuter and residential parking supply and parking prices.
- Minimize and disperse heavy truck traffic travelling to/from UBC.

2.2.4 Transportation Status Report (2013)


The Transportation Status Report is an annual report that compiles all of the findings from annual data collection programs conducted at UBC. These data collection programs vary from speed counts to screenline and intersection traffic counts. The report provides an understanding of the year-to-year travel trends and progress of achieving the university's transportation goals and strategies. Key findings that provide context to the Block F development site include:

- Daytime population (including students, staff, and faculty members) at UBC has steadily increased from 42,300 in 1997 to 64,000 in 2013, representing a 51% increase over 15 years.
- A variety of changes at UBC have significantly increased transit ridership such as introduction of the U-pass program, increased transit service, decreased parking supply and increased parking costs. Transit trips have quadrupled in the last 16 years and now represent approximately 60% of all trips to and from UBC.
- Despite the considerable population growth and steady increase in person trips at UBC, automobile trips (single occupancy vehicle and carpool trips) have decreased by 21%, achieving the goal to not exceed daily automobile traffic in 1997as set out in the STP.
- SOV trips per person have decreased 46% since 1997, exceeding the STP goal of 30%.
- Pedestrian and bicycle trips have decreased 38% and 34% since 1997, respectively, but have marginally fluctuated in the last 5 years.
- A total of 234 bicycles were observed on buses in one day out of an available 4,214 racks on buses. This is an increase from 2012 when there were 201 bicycles counted and a capacity of 4,162. The most popular route for cyclists to travel with their bicycles was the 99 B-Line, followed by the 84 and 44 routes.

With the provision of various Transportation Demand Management programs (U-Pass, employer pass programs, bike-share and car-share programs) and end-of-trip cyclist facilities, UBC has seen a major shift from auto trips to transit trips.

Exhibit 2.5 shows a significant shift in auto trips to transit trips since the introduction of the U-Pass in 1997.

Exhibit 2.5: Mode Split

Source: UBC Transportation Planning

2.2.5 UBC Line

The UBC Line is a potential rapid transit line along the Broadway corridor connecting UBC with Central Broadway, and other rapid transit lines in Vancouver. The UBC line is being considered because of the continued growth occurring along the Broadway regional corridor and the increasing number of students enrolling at UBC. Due to this growth, the existing bus transit service is reaching its capacity. Major stakeholder groups (TransLink, the Province, the City of Vancouver, UBC, University Endowment Lands, and Metro Vancouver) are working on a technical study to determine the transportation technology and alignment of this potential new rapid transit line. The transportation technology for the UBC Line has not yet been decided at this stage. Alternatives that are under considerations include, Bus Rapid Transit (BRT), Light Rail Transit (LRT), and Rail Rapid Transit (RRT).

The potential location of a rapid transit line within close proximity to the development site in the future makes this site highly accessible by transit to all areas throughout the Lower Mainland. While the design for the UBC Line has not yet been determined, all seven alternatives currently being considered indicate that UBC Line would run along Broadway / University Boulevard. Five of the alternatives consider a potential station directly across from the development site.

The UBC Line is still in the planning stages and a timeline for construction and completion has not yet been determined. The recent Mayor's Council *Regional Transportation Investment Plan* proposes that, if approved, the SkyTrain Millennium Line would extend from VCC-Clark to Arbutus Street along the Broadway corridor to serve current and future demand in the next decade. Therefore, it is likely that any rapid transit extension to UBC would be post-2025.

3. EXISTING CONDITIONS

Currently, the site consists of forested vacant land bounded by Acadia Road to the west, University Boulevard to the east and Toronto Road to the north. A number of multi-use trails traverse the site providing connections for pedestrians and cyclists.

The surrounding neighbourhood is comprised primarily of residential and institutional developments along Acadia Road and some retail, restaurant and institutional uses along University Boulevard to the west.

3.1 Study Area

Table 3.1 indicates the intersections that are included in the study area along with their control types.

Table 3.1: Study Area Intersections

Intersection	Control
University Boulevard & Arcadia Road	Pedestrian/Bike-Actuated Signal
University Boulevard & Toronto Road	Stop control on Toronto Road
Acadia Road & Toronto Road	Four-way stop control
University Boulevard & Wesbrook Boulevard	Signal
University Boulevard & Blanca Street	Signal
Wesbrook Boulevard & Thunderbird Boulevard	Signal

The intersection of Wesbrook Boulevard & Thunderbird Boulevard is included given the connection to the site via Acadia Road.

Traffic surveys were conducted in March of 2011 and 2013 and were used to determine existing traffic movements in the area during the morning (7am to 9am) and afternoon (3pm to 6pm) peak periods. The observed morning and afternoon peak hour traffic volumes are summarized in **Exhibit 3.1**.

3.2 Mode Split

The University of British Columbia published mode split data in their *Fall 2011 Transportation Status Report.* Screenline data from 1997 to 2013 was presented. This data measures mode split for all trips to and from the university and is helpful in relation to the expected mode split of our site. Mode splits presented in *Figure 2.3* of the UBC Fall 2013 Transportation Status Report are summarized in **Table 3.2**.

AM (PM) - Volumes (Rounded to nearest 5)

Exhibit 3.1 Existing Peak Hour Vehicle Volumes

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

Table 3.2: Weekday Mode Split

Trip Mode	1997 UBC	2013 UBC
Transit	18%	55%
Single Occupant Vehicle	43%	28%
Carpool and Vanpool	34%	14%
Bicycle	3%	1%
Walk	1%	1%
Other	1%	1%
Total	100%	100%

The large change in transit users is largely in part to the introduction of the U-pass. However, in both 1997 and 2013, single occupancy vehicles represent less than 50% of the trips. Statistics Canada identifies Metro Vancouver's journey to work mode split as approximately 60% single occupancy vehicle based on 2006 census data, down slightly from 1996. The university area experiences a higher number of alternative mode trips than the Metro Vancouver average. The proposed land uses for Block F are not identical to that of the university, but will be similar and complementary in some cases. It is expected that the site will experience a lower number of vehicle trips than similar developments elsewhere in the lower mainland.

3.3 Norma Rose Point Elementary School

The new Norma Rose Point elementary school at 5488 Ortona Road opened its doors in September 2014 with instruction for grades K-8 and a planned eventual student population of 920 students. The student enrollment at present is approximately 500 students. The two access routes for vehicle traffic heading toward and away from the school are Acadia Road (with connection to University Boulevard via Toronto Road) and Osoyoos Crescent which connects to Thunderbird Boulevard.

The new school features pick-up/drop-off parking in parking lots located directly adjacent the Osoyoos Crescent frontage and also off Ortona Road. Pick-up/drop-off activity also occurs on street along Osoyoos Crescent and Acadia Road.

Classes begin at 8:40am for the Grade 6 to 8 students, and at 8:55am for Kindergarten to Grade 5 students. Dismissal time for all grades is at 3:00pm.

Expected vehicle movements from the Norma Rose Point Elementary at full occupancy are taken into consideration in forming the background vehicle flows for the future conditions, which are discussed in further details in Section 5.2 of the report.

3.4 Peak Hour Selection

The time of the AM and PM Peak hours were considered for this site. University Boulevard, Norma Rose Point Elementary, and the site are expected to have overlapping AM Peak Hours.

However, the Norma Rose Point Elementary school does have a different peak traffic activity period in the PM, and therefore may impact the selection of the street network peak-hour period for the PM. The PM peak hour for University Boulevard is approximately 1,050 trips (650 EB, 400 WB) between 4:30pm and 5:30pm. The school is anticipated to have a PM peak hour between 2:45pm and 3:45pm, with approximately 175 trips (165 EB/10 WB) adding onto University Boulevard. Vehicle volumes along University Boulevard at the school peak hour period is to just under 1,000 trips (600 EB, 400 WB). The peak-hour volumes on University Boulevard at 2:45pm and 4:30pm peak hour are very close to each other, with the volumes at 2:45pm being 50 vehicles higher. However, the PM peak-hour for the site land uses is expected to be consistent with the University Boulevard PM peak-hour at 4:30pm to 5:30pm. The site volume is expected to have a larger impact on the road network and therefore the PM Peak-hour of 4:30pm to 5:30pm was selected.

3.5 Peak Hour Factor

The peak hour factor for the collected data was analysed to better approximate the existing peak hour traffic conditions. The peak hour factors for the study area during the AM peak-hour were approximately 0.80 to 0.85. This indicates a slightly higher concentration of peak 15-minute vehicle traffic than the typically range. During the afternoon peak hour, the peak hour factors were in a typical range of approximately 0.90 to 0.95.

The peak hour factors used for all movements for all analysis periods was 0.80 during the AM Peak hour and 0.92 during the PM Peak hour.

3.6 Existing Traffic Operations

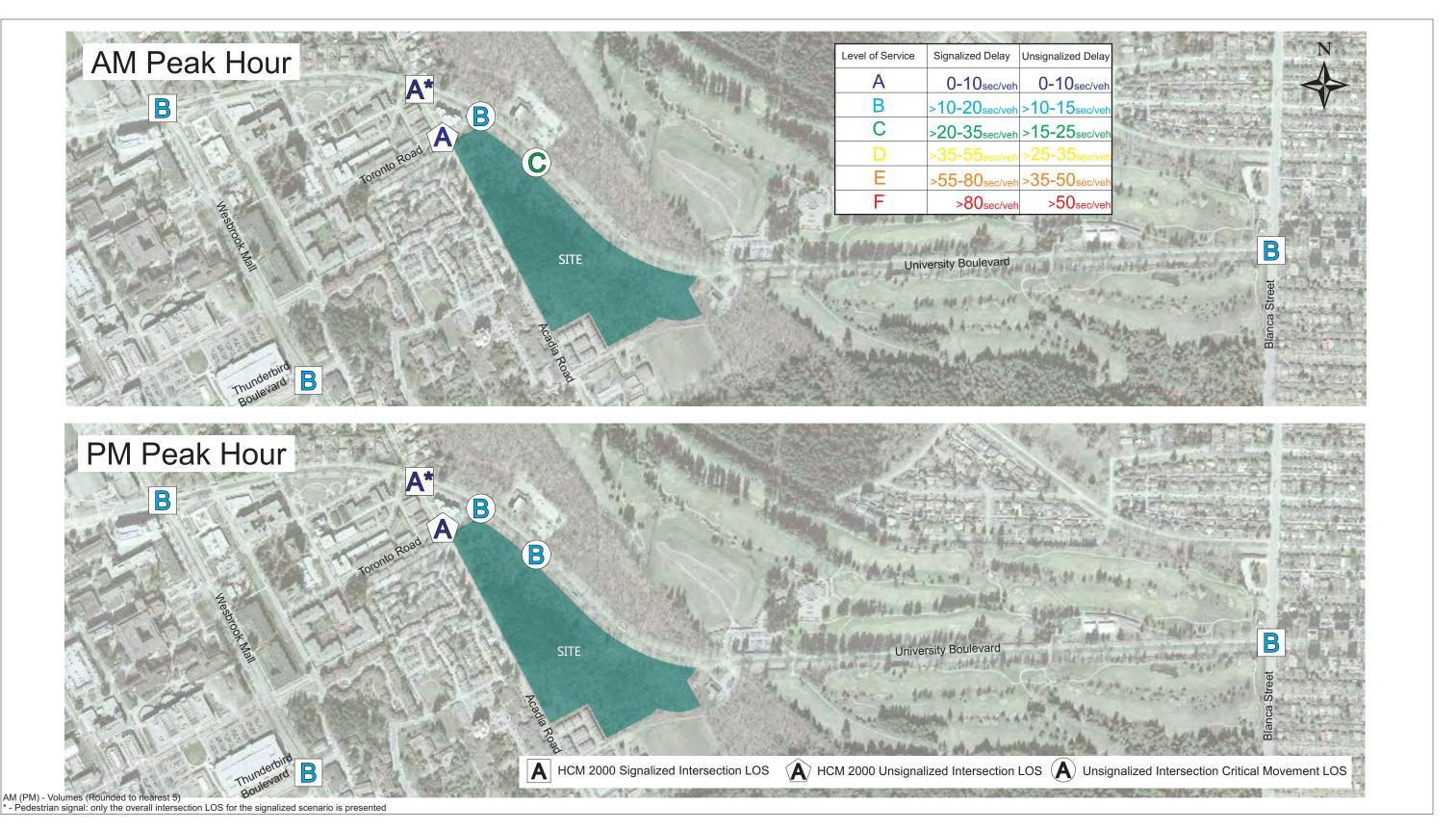
Traffic operations of the study intersections were evaluated using Trafficware's Synchro 8.0 traffic analysis model with HCM 2000 reports. This model uses standard procedures to test the Volume to Capacity ratio (V/C) and the corresponding delay-based traffic Level of Service (LOS) at each of the intersections in the study area. For the Level of Service indicator, the following summarize the range of delays (in seconds per vehicle) for signalized and unsignalized intersections:

- For signalized intersection, the Level of Service ranging from LOS 'A' conditions with minimal delay (< 10 sec per vehicle) through to LOS 'E' 'near capacity' conditions (> 55 sec to ≤ 80 sec per vehicle) and LOS 'F' 'over-saturated' conditions (> 80 sec per vehicle).
- For unsignalized intersection, the Level of Service ranging from LOS 'A' conditions with minimal delay (< 10 sec per vehicle) through to LOS 'E' 'near capacity' conditions (> 35 sec to ≤ 50 sec per vehicle) and LOS 'F' 'over-saturated' conditions (> 50 sec per vehicle).

The pedestrian-actuated signal at University Boulevard and Acadia Road is not able to be properly assessed using the Synchro 8 software. In order to better understand the operations at this intersection, two control types were considered:

- Actuated Signal (assumes pedestrian actuation every cycle and is the best case for the side street); and,
- Stop controlled (assumes no pedestrian actuation and is the worst case for the side street).

This approach results in two reported values of capacity and LOS for the pedestrian-actuated signals reflecting the very different traffic operations experienced when pedestrian actuation is present, or not. It is expected that the actual operation will be between these two results based on the number of pedestrians and pedestrian calls.


It should also be noted that the HCM 2000 report outputs levels of service (not v/c ratios or 95th percentile queue lengths) for 4-way stop controlled intersections.

Finally, given the wide through/right curb lanes at all the approaches of the Blanca Street & University Boulevard intersection, the curb lanes have been modelled as separate through and right lanes. The modelling assumption is consistent with the actual operations that were being observed on-site.

This modelling approach is also supported by the Highway Capacity Manual (HCM). In particular, Chapter 18 of HCM 2010 states that when lane widths are greater than 16 ft (4.8m), "the analyst should consider whether the wide lane actually operates as two narrow lanes. The analysis should reflect the way in which the lane width is actually used or expected to be used."

Table 3.3 summarizes the performances of each of the study intersections analysed for the morning and afternoon peak periods. The v/c ratio, LOS, and 95^{th} percentile queue have been presented for the critical movement for each approach. The same information is also presented graphically in **Exhibit 3.2**.

Model outputs are included in Appendix A.

Exhibit 3.2 Existing Intersection LOS Summary

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

Table 3.3: Existing Traffic Operations

	Critical	АМ			РМ		
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)
Signalized Intersection							
	Overall	0.52	В	-	0.79	В	-
Weekreek Mell (ND (CD) 9	EB L	0.32	В	20	0.74	С	52
Wesbrook Mall (NB/SB) & Thunderbird Blvd (EB/WB)	WB L	0.30	С	13	0.49	С	20
	NB T/R	0.47	А	64	0.40	В	49
	SB T	0.49	С	49	0.74	С	107
	Overall	0.32	В	-	0.40	В	-
	EB L/T/R	0.10	С	11	0.43	С	28
Wesbrook Mall (NB/SB) &	WB L	0.31	В	26	0.17	В	13
University Blvd (EB/WB)	NB T	0.34	В	31	0.29	В	33
	SB L	-	-	-	0.43	В	34
	SB T/R	0.23	В	29	-	-	-
	Overall	0.49	В	-	0.40	В	-
Liniconsity Divel (ED (M/D) 9	EB L/T	0.30	В	21	0.52	В	39
University Blvd (EB/WB) & Blanca St (NB/SB)	WB T	0.65	В	75	0.36	В	36
	NB T	0.29	В	28	0.28	В	28
	SB L/T	0.20	В	16	0.15	В	12
	Overall	0.50	А	-	0.44	А	-
University Blvd (EB/WB) &	EB L/T/R	0.27	А	19	0.46	А	36
Acadia Rd (NB/SB)	WB L/T/R	0.51	А	45	0.26	А	18
(Signalized)	NB L/T/R	0.39	В	13	0.21	В	7
	SB L/T/R	0.25	В	9	0.32	В	10

Table 3.3: Existing Traffic Operations (Cont'd)

	Critical		АМ			РМ		
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)	
Unsignalized Intersection								
	EB L/T/R	0.01	А	0.1	0.00	А	0.1	
University Blvd (EB/WB) & Acadia Rd (NB/SB)	WB L/T/R	0.00	А	0	0.00	А	0.1	
(Unsignalized)	NB L/T/R	0.22	С	6	0.11	С	3	
	SB L/T/R	0.14	С	4	0.17	С	5	
	EB L/T/R	-	А	-	-	А	-	
Acadia Rd (NB/SB) & Toronto Rd (EB/WB)	WB L/T/R	-	А		-	А	-	
(4-way Stop)	NB L/T/R	-	А	-	-	А	-	
	SB L/T/R	-	А		-	А	-	
University Blvd (NB/SB) &	NB L/T	0.10	А	3	0.10	А	3	
Toronto Rd (EB/WB)	EB L/R	0.22	В	6	0.31	В	10	
University Blvd (NB/SB) &	SB L/T	0.02	А	1	0.00	А	1	
University Chapel (EB/WB)	WB L/R	0.04	С	1	0.06	В	2	

Notes: a) "-" represents a value that is not calculated by Synchro;

b) **Bolded** results indicate an LOS F, a v/c ratio > 1.0 or a 95th percentile queue that exceeds its physical storage space.

c) EB, WB, NB, and SB represent eastbound, westbound, northbound, and southbound, respectively.

d) L, T, R represent left, through, and right, respectively.

Overall, levels of service during the weekday AM and PM peak hours are satisfactory, ranging from LOS 'A' to 'C'. In addition, all movements are shown to operate with low v/c ratios and short 95th percentile queue lengths. Based on the analysis, the intersection of University Boulevard and Acadia Road operates at an acceptable level both during the time when the signal is being called by pedestrians or when no called is made.

4. PROPOSED DEVELOPMENT

Exhibit 4.1 shows the site plan for the development. The existing Sword Fern and Fairview Trails will be retained, and are integrated into the design to provide access to existing trails. Retail use is located on the north end of the site with a community building south of this location while residential uses are planned throughout the site. **Table 4.1** summarizes the land use breakdown. It is anticipated that the proposed development breakdown would represent the upper limit of the developable programme on the site.

Table 4.1: Proposed Development Breakdown

Land Use	Quantity
Residential	1,300 units
Retail	30,000 ft ²
Community Building (including 4,800 ft² for Daycare use)	19,800 ft ²

Currently, a grocery store is planned to be part of the retail use. It is planned to be 15,000 ft² of the 30,000 ft² of retail use. The remaining uses are expected to be a combination of restaurant/café and general retail. The Community Building is envisioned to be publicly accessible by residents in the UEL with gym facilities, meeting rooms, and a daycare.

4.1 Street Network and Site Access

As part of the development plan, two access roads will be provided, with connections between Acadia Road and University Boulevard.

4.1.1 Road A

Located at the northern part of the site, Road A is proposed to provide full movement access from University Boulevard to residential uses, the Community Building, and access to the a number of underground parkades via Acadia Road. A traffic signal at this location would improve the left-turn exit from the site to University Boulevard as well as the westbound left-turn access from University Boulevard.

Left-turn bays are planned at the intersection of Road A & University Boulevard, with storage lengths proposed at 50m and 30m for the westbound and eastbound directions, respectively. Parallel street parking stalls are generally available on Road A with 90-degree parking stalls available across from the Community Building.

Exhibit 4.1 Proposed Site Plan

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

Installing a traffic signal at Road A & University Boulevard will provide controlled crossing opportunities for future residents accessing to the bus stops along University Boulevard. In addition, in light of the proposed UBC rapid transit line along University Boulevard, consideration should be given to potentially providing a rapid transit stop at this location to take advantage of the controlled pedestrian crossing point.

The planning of the UBC rapid transit station is outside of the scope of this project. However, the traffic signal proposed will not preclude the implementation of the future rapid transit stops along University Boulevard.

The intersection of Road A at Acadia Road will be a stop-controlled intersection with priority movement along Acadia Road.

4.1.2 Road B

Located at the southern part of the site, Road B provides access primarily to various residential buildings that are proposed in the Master Plan. As it will be evident in Section 5, it is expected that majority of the residential vehicle trips are oriented to/from the east. Given this, intersection control at the intersection of Road B & University Boulevard is proposed to be unsignalized, with Right-in/Right-out and Left-in access only. A westbound left-turn bay is proposed along University Boulevard, with storage length of approximately 45m. On-street parking is generally available on Road B.

The intersection of Road B at Acadia Road is proposed to be controlled by a roundabout. The proposed roundabout at Road B & Acadia Road has an offset with Fairview Lane on the west side of Acadia Road. However, the expected left-turn volumes at these locations are quite low with less than 1 vehicle every 10 minutes and therefore are not expected to result in any operational issue. With the redevelopment of the UBC student housing in the future, it is desirable to have the future connection opposing Block F to align with the proposed Road B in the site Master Plan.

Road B primarily serves the residential uses adjacent to it with only a small amount of shortcutting traffic expected. Road B will only be required to support the residential development adjacent to it and may be staged with this construction.

4.1.3 Traffic Calming and Accommodation of Cyclists

The presence of on-street parking and raised midblock crossing will serve as appropriate traffic calming measures to reduce vehicle travel speed along Road A and Road B. Along Acadia Road, the proposed roundabout at Road B & Acadia Road will also serve as a traffic calming feature.

In terms of accommodation of cyclists, the UEL Official Community Plan does have a policy to encourage MoTI to install new on-road bicycle lanes on all roads within the UEL jurisdiction. However, based on the review of traffic volumes that are expected on Road A and Road B, it is Bunt's opinion that marked bike lanes would not be warranted on those streets as per the NACTO and CROW guidelines, where both of the guidelines advised that bike lanes are only useful if daily vehicle volumes are >3,000 vehicles per day).

Instead of installing marked bike lanes on Road A and Road B, it is suggested that bike stencils (sharrows) can be installed on both Road A and Road B to alert drivers of the presence of bicycles. In addition, for the intersection of Road A & University Blvd, a short-section of marked bike lane may be provided between the right-turn and the left-turn lanes, along a bike box at the front of the right-turn lane.

Finally, given the higher volume projected on Acadia Road (~6,000 per day), it may be more appropriate to direct cyclists to utilize the off-street Iva Mann multi-use trail that runs north-south through the Block F site to the Norma Rose Point Elementary school to the south. Bicycle lanes that are currently provided along University Blvd will be retained as part of the site plan.

4.2 Parking

On-street parking is generally available on both Road A and Road B. As part of the development plan, onstreet parking is also planned along the site frontages on Acadia Road.

Off-street parking requirements for the development have been carefully planned, taking into consideration relevant planning policies, as well as anticipated built-form and expected parking demand for the proposed Master Plan. Excessive provision of parking would undermine the urban design and generate unnecessary vehicle trips. It is imperative that parking be provided at a level that meets the broad sustainability objectives, while ensuring the development is commercially viable.

The following highlights the parking requirements that are currently mandated for the University Endowment Lands. It will then compare with the parking rates that are currently used for the South Campus community in the UBC neighbourhood, as well as the Proposed parking supply ratios that are developed based on the Project Team's experiences for other mixed-use community similar to the proposed development.

4.2.1 Residential Parking

Table 4.2 shows the comparison of the residential parking rates.

Use	UEL Land Use, Building and Community Administrative By-Law (1999)	UBC South Campus Northeast Sub-Area Neighbourhood Plan (2005)	Proposed Parking Supply Ratios (Minimum)
Apartments & Condominiums	1.6 for every unit inclusive of a minimum of 0.25 per unit for visitors	Minimum: None; Maximum: 1 for each 70 sq m of GFA, or 1.8 per unit, whichever is less, Inclusive of 0.1 for visitor and 0.1 for handicap.	Low-rise (up to 6 storeys): 1.1 per unit for residents plus 0.1 per unit for visitors; Condominium (7-16 storeys): 1.0 per unit for residents plus 0.1 per unit for visitors.
Townhouses	1.75 for every unit inclusive of a minimum of 0.25 per unit for visitors	Minimum: None; Maximum: 2.0 spaces per unit inclusive of 0.1 for visitor and 0.1 for handicap.	1.4 per unit for residents plus 0.1 per unit for visitors.

Both UEL and UBC South Campus do have specific parking requirements for Market-Residential (Apartment/ Condominium and Townhouse uses). The UEL minimum parking rate for Apartments and Condominiums are approximately 30% to 35% higher than what have been previously applied by Bunt & Associates for similar communities. For townhouses, the UEL parking rate is 10% to 15% higher than the rates that have been applied for other comparable communities. The suggested parking supply ratios for residential uses are also supported by the survey findings in the *Metro Vancouver Apartment Parking Study (September 2012)*.

The UBC South Campus community does not have any minimum parking rate for Market-Residential use, as this determination is left to the individual developer. In fact, the parking policy at the South Neighbourhood stipulates parking maximums for both condominiums (1 for each 70 sq m of GFA, or 1.8 per unit, whichever is less) and townhomes (2.0 spaces per unit). The parking rates are also inclusive of visitor and handicap parking at 0.1 space per unit for each category. As a comparison, Auto-ownership data obtained from ICBC for comparable buildings in the UBC area also suggested vehicle ownership are generally lower than 1.0 space per unit, as shown in **Table 4.3**.

Building	Year Built	Tenure	Address	No. of Units	Vehicle Count as of June 30, 2013	Average Auto Ownership (Vehicles Per Unit)
The Chatham	1995	Leasehold Prepaid-Strata	5775 HAMPTON PL	97	112	1.15
The Wesbrook	2009	Leasehold Prepaid-Strata	5838 BERTON AVE	65	67	1.03
Keats Hall	2005	Leasehold Prepaid-Strata	2280 WESBROOK MALL	92	53	0.58
Westcott Commons	2005	Leasehold Prepaid-Strata	2388 WESTERN PKY	72	48	0.67
Winslow Commons	2001	Leasehold Prepaid-Strata	2338 WESTERN PKY	64	37	0.58
			TOTAL	390	317	0.81

Table 4.3: Average Auto Ownership for Multi-Family Residential Buildings in UBC

The average auto ownership for the buildings studied were is found to be less than 0.90 spaces per unit. Therefore, the planned parking minimums are considered appropriate for the residential use.

4.2.2 Non-Residential Parking

Table 4.4 shows the comparison of the non-residential parking rates.

Table 4.4: Comparison of Non-Residential Parking Rates

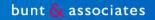
Use	UEL Land Use, Building and Community Administrative By-Law (1999)	UBC South Campus Northeast Sub-Area Neighbourhood Plan (2005)	Proposed Parking Supply Ratio (Minimum)
Retail	None	N/A	2.5 per 1,000 sq ft GFA
Restaurants	None	N/A	6 per 1,000 sq ft. GFA
Community Building	1 space for every 200 sq. ft. of floor area used for assembly purposes.	N/A (rely on-street parking only)	None for patrons (rely on-street parking only), plus 3 underground parking stalls in Parcel A reserved for staff only during the operating hours of the Community Building.
Daycare (Staff Parking)	Not Specified	N/A	1 per 15 children (3 underground parking stalls in Parcel A reserved for Daycare staff during the operating hours of the Daycare)
Daycare (Pick-up/Drop-off)	Not Specified	N/A	1 every 8 children (located on-street)

From Table 4.4, it is clear that the current UEL By-Law and the UBC South Campus Neighbourhood Plan do not provide much guidance with regards to the appropriate parking supply levels for non-residential uses. This could partly be explained by the fact that both the UBC South Campus community and the existing community at UEL do have a significant number of residents where they can access the commercial facilities easily by walking or cycling hence reducing the need of parking for the non-residential uses.

For the proposed Block F Master Plan, some provision of parking would be appropriate to ensure the viability of the retail and restaurant uses in the community. The proposed parking ratios for the retail and restaurant uses are based on research and industry best practices as outlined in Industry Guidelines such as the *ITE Parking Generation*, along with input from commercial real estate leasing agents.

For the proposed Community Building, based on Bunt & Associates' previous observations at other community centres in an urban setting, peak parking demand for this type of use is generally at 2 per 100 sq m (1.86 stalls per 1,000 sq ft). However, there is opportunity to share some of the parking between the retail/restaurant and the community building as their peak activity periods vary throughout the day. Given the peak usage period for the community building typically occurs in early evenings, it is expected that some of the commercial activities would be lower, where patrons can park at some of the retail parking stalls. It is therefore proposed that parking for community building will be accommodated primarily through on-street parking, with the ability for patrons to park underground in Parcel A or Parcel B if available. The Master Plan will provide three reserved underground parking stalls in Parcel A or Parcel B for employees of the Community Building during the operating hours of the Community Building.

For the Daycare centre, Bunt's previous observations also found that staff parking is approximately 1 for every 15 children and pick-up/drop-off demand is approximately 1 for every 8 children. Three underground parking stalls will be reserved for the Daycare centre staff in Parcel A or Parcel B, while the pick-up/drop-off spaces will be accommodated on-street along the frontage of the Daycare centre during the peak vehicle activity periods (i.e. 7am to 9am for drop-off and 4pm to 6pm for pick-up).


4.3 Loading

Loading for the development will be provided to meet or exceed the minimum requirements set out in the UEL Zoning By-law. For the multi-family residential buildings, delivery vehicles will be accommodated at the parking lay-by located along Road B. Consideration could be given to share a number of underground visitor parking stalls within each parkade of the residential buildings to accommodate maintenance and smaller delivery vehicles, etc.

4.4 Sustainable Transportation Features

The proposed Block F development aims to promote non-auto travel through the introduction of a number of sustainable transportation features within the site Master Plan:

- Bicycle Parking and End-of-Trip Facilities
- Car-Share Vehicles

- Ride-Share Programs
- Multi-Modal Access Guide

These features are discussed in detail on the following page.

4.4.1 Bicycle Parking and End-of-Trip Facilities

Bicycle parking is planned for residents and employees in secure locations, while short-term visitor bicycle parking will be provided at building entrances or in the public realm.

The current UEL Land Use, Building and Community Administration Bylaw do not have any specific guidelines on the bicycle parking requirements for the different uses proposed on-site. Provision levels will therefore be modelled based on best practice, as indicated in **Table 4.5**. The provision level can be refined as the development continues to build-out over time.

Table 4.5: Proposed Bicycle Parking Supply Ratios

Land use	Class I (Long-term)	Class II (Short-term)
Residential	1 per unit	6 spaces per Building
Commercial/Retail	1 per 5000 sq ft	1 per 1000 sq ft
Community Building/Daycare	1 per 10 staff	1 per 2000 sq ft

In addition to bicycle parking, end-of-trip facilities such as showers and lockers will be incorporated into the community building for use by Block F commercial tenants and employees.

4.4.2 Car-Share Vehicles

Car-sharing clubs have developed significantly in the last 10-15 years in the Lower Mainland and allow people to have access to a car in their area without having to buy or maintain their own vehicle. Members are usually charged on a "pay-as-you-go" basis.

UEL currently allows for the substitution of car-share vehicles for off-street parking stalls as part of the CD-1 Zoning Requirements for the University Village area. In particular, for every 60 residential units, a carshare vehicle can be provided to substitute the need of 5 residential parking stalls. It is proposed that future residential development at Block F would follow the same model in order to reduce the overall parking supply for the site, as well as providing viable alternatives for residents. The decision of introducing car-share vehicles will be left to the developers of each site.

In addition, it is proposed that these car-share vehicles to be located in publicly accessible locations such as the surface parking area near the commercial centre, the community building, or on-street to encourage utilization.

4.4.3 Ride-Share Programs

Ride-sharing involves two or more people sharing a car for a trip. The cost of the journey (fuel, tolls, parking, etc) can be split between the driver and passengers, resulting in savings for all members. Ride-sharing also helps reduce the number of vehicles on the road network and lowers parking demand.

The Block F development could help promote ride-sharing through simple measures such as bulletin board notices or information packages provided to residents.

Also, residents could be linked up with a number of existing public ride sharing schemes such as the Jack Bell Ride-Share Program (<u>https://online.ride-share.com/en/my/</u>).

4.4.4 Multi-Modal Access Guide

A Multi-Modal Access Guide (also called a Transportation Access Guide) is a document or set of documents that provide concise, customized information on how to access a particular destination by various travel modes, with special consideration of sustainable modes such as walking, cycling and public transport. This guide could be disseminated to all residents at Block F, and could be posted to the residents' website(s), or be made available at a kiosk or bulletin board in the proposed community facility. The contents of this guide could include:

- A map of the area, showing the internal walking trails, major roads, nearby landmarks, the closest bus routes/stops, and recommended cycling and walking routes to key destinations;
- Information about transit service frequency, fares, first and last runs, plus phone numbers and web addresses for transit service providers
- Phone numbers and web addresses for taxi companies;
- Information on how long it takes to walk from transit stops and other locations near the site;
- Access arrangements for people with disabilities;
- Carpool program hotline number; and,
- Car Share program policies and vehicle locations.

Different versions of the Multi-modal access guide may be needed to accommodate different types of users, including special versions for people who have disabilities, speak a different language, travel by a particular mode, or travel from a particular area.

5. FUTURE TRAFFIC OPERATIONS

5.1 Capacity Analysis Scenarios

Four future analysis horizons will be analyzed:

- Background 2030 AM Peak
- Background 2030 PM Peak
- Total (Background + New Site Trips) 2030 AM Peak
- Total (Background + New Site Trips) 2030 PM Peak

Results of this analysis are presented in Section 5.4.

The project is phased over 10-12 years, with the Master Plan build-out expected to be 2025. The analysis year of 2030 was selected to coincide with the final year of the *UBC Vancouver Campus Plan to 2030* discussed in Section 2. Often, in a report of this nature, an opening day horizon and a horizon 10 years after opening day are both analyzed. The decision was made to consider only 2030 given:

- The short time between the two years;
- The small amount of background growth;
- The lack of any significant network change between the two horizon years; and,
- The small number of network improvements required.

The Background 2030 Horizon will identify any network improvements required as a result of the existing traffic and any background traffic growth not generated by the Master Plan.

The Total 2030 Horizon will add the new site trips to the network and apply any expected adjustments to the background traffic including pass-by and shortcutting trips. Trip generation and distribution assumptions are identified and discussed in Section 5.2.

5.2 Background Traffic Growth

The UBC Fall 2011 Transportation Status Report¹ (April 13, 2012) summarizes the mode choice and number of person trips to and from the university. UBC has been working to reduce automobile trips to and from UBC and encouraging alternative modes of travel. Between 1997 and 2011, automobile volumes have reduced from over 60,000 daily vehicles to fewer than 50,000 based on UBC screenline counts. During that time, UBC daytime population (students, staff and faculty) has increased 43%. One major factor was the introduction of the U-Pass for students, giving all students a reduced cost transit pass included in their student fees. This was implemented for the fall of 2003 and that year showed an automobile volume drop of over 5,000 daily trips.

The UBC Vancouver Campus Plan (June 2010) identifies daytime population (student, staff and faculty) growth up to 2017, at which point enrollment is planned to be capped. The expected increase from 2007 to 2017 is approximately 5% (~2,500 persons); this is significantly lower than the 43% (~18,000 persons) increase in daytime population between 1997 and 2011.

A combination of the historic reduction in automobile volumes and the slowing of daytime population growth provide a reasonable expectation that background volumes are unlikely to increase during the analysis period.

One additional consideration affecting background growth is the redevelopment and densification of the Acadia Neighbouring adjacent to the site. Data specific to the Acadia Neighbourhood was not available, however, some data was available for campus wide student housing was available. The *UBC Vancouver Campus Plan (June 2010)* identifies a goal to house 50% of full time students on campus by 2030.

Achieving this goal will result in an additional 8,000 beds, nearly doubling the existing supply. The new student housing will not be located solely in the Acadia Neighbourhood. However, it is prudent to consider the transportation impacts of additional people living on campus. The process to determine traffic growth based on additional student housing is outlined below.

5.2.1 Student Housing Vehicle Trip Generation

Trip rates for student housing collected previously by Bunt & Associates were used to determine expected vehicle trips for the new student housing. **Table 5.1** summarizes the volumes.

¹ Analysis for the Transportation Assessment was undertaken before the UBC Fall 2013 Transportation Status Report became available. The 2011 Transportation Status Report was used for the purpose of analysis.

Table 5.1: Student Housing Trip Generation

Period	Bunt Trip Rate Housing (trij	Total Trips (8,000 beds)	
	Inbound	Outbound	(0,000 bcu3)
AM Peak	0.03	0.02	407
PM Peak	0.08	0.08	1,303

5.2.2 New Vehicle Trips per year

Construction of the new student housing is assumed to begin immediately (2013) and be completed in 2030. This period is 17 years and assuming an even distribution, an increase of approximately *100 vehicle trips per year* during the peak-hour periods (AM and PM combined) is assumed.

5.2.3 Screenline Volume Distribution

Based on Figure 2.7 in the *UBC Fall Transportation Status Report*, approximately 23% of traffic accessing UBC uses University Boulevard. Applying this yields *approximately 25 new vehicle trips* during the peakhour periods along University Boulevard every year.

5.2.4 Percentage Growth

To approximate the spread of the new student housing throughout the campus, a percentage increase was applied to all movements within the study area rather than strictly increasing traffic along University Boulevard.

Considering the existing 2013 two way volumes along University Boulevard of 1,175 vph during the AM Peak and 1,075 vph during the PM Peak, the 25 daily new trips per year correspond to an approximate growth of 1% per year for a total of 425 new peak hour trips by 2030. A linear growth rate of 1% per year was applied to the existing 2013 volumes through to 2030.

This process represents a conservative analysis as the existing volumes are not adjusted based on the reduction of students living off-campus.

5.2.5 Vehicle Trips from Norma Rose Point Elementary School

The new elementary school in the Acadia neighbourhood is expected to increase vehicle movements within the study area during the morning and early afternoon. A *Traffic and Parking Study* was prepared by Creative Transportation Solutions (CTS) in 2010 for the VSB to support the proposed new school. Based on information presented in the CTS report, the expected peak hours of the school are 8:15am to 9:15am and 2:45pm to 3:45pm. The afternoon peak-hour for the elementary school occurs before the peak-hour in the study area and therefore will not be included in the analysis. The distribution for the morning peak-hour from the CTS report is presented in **Table 5.2**.

From/To	Inbound	Outbound
North	16.4%	17.4%
East	29.3%	55.3%
West	55.3%	43.5%
Total	100.0%	100.0%

Table 5.2: Elementary School Morning Peak Hour Distribution

More detailed volume data is available in *Figure 12* of the CTS report.

In Fall 2014, Bunt conducted vehicle counts at the Norma Rose Point Elementary school after the first stage of the school opening (500 students) to provide additional insight on the expected school volumes along Acadia Road. Based on the counted volumes, the school traffic is factored up to account for a full occupancy of the school (920 students).

Accordingly, in the AM Peak Hour, 75 northbound school trips (away from the school) and 149 southbound school trips (towards the school) are projected along the section of Acadia Road north of Ortona Road. For comparison, the CTS projected school volumes were 115 northbound and 112 southbound. For the background traffic forecast, the Bunt factored data was used for the section of study network north of Ortona Road. It is important to note that directly factoring up the school traffic from the 500-student to 920-student enrollment is likely overstated, as a portion of the of the future students could potentially be coming from Block F, where they are likely to walk or cycle to the school than in the case with the existing catchment area. Nevertheless, it provides a more robust analysis for the future scenarios.

For the school traffic via Wesbrook Mall and Thunderbird Boulevard, the projections from the CTS report were used. Based on the information from the CTS report, approximately 90 vehicles are expected to depart via the intersection of Wesbrook Mall & Thunderbird Boulevard and 140 vehicles arrive by the same intersection in the AM Peak-hour period.

5.2.6 Summary

A 1% per year linear growth rate was applied to account for the Acadia Neighbourhood densification. The morning peak-hour volumes for the Norma Rose Point Elementary (factored up for 920-student occupancy) were also added to the background growth. The afternoon peak-hour of the school occurs outside of the study area peak and therefore is not included in the analysis.

No background volume reduction was considered even though the proposed UBC rapid transit line may happen post-2025. Summarizing the information above, the morning and afternoon peak hour 2030 Background volumes are presented in **Exhibit 5.1**.

AM (PM) - Volumes (Rounded to nearest 5)

Exhibit 5.1 Background 2030 Peak Hour Vehicle Volumes

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

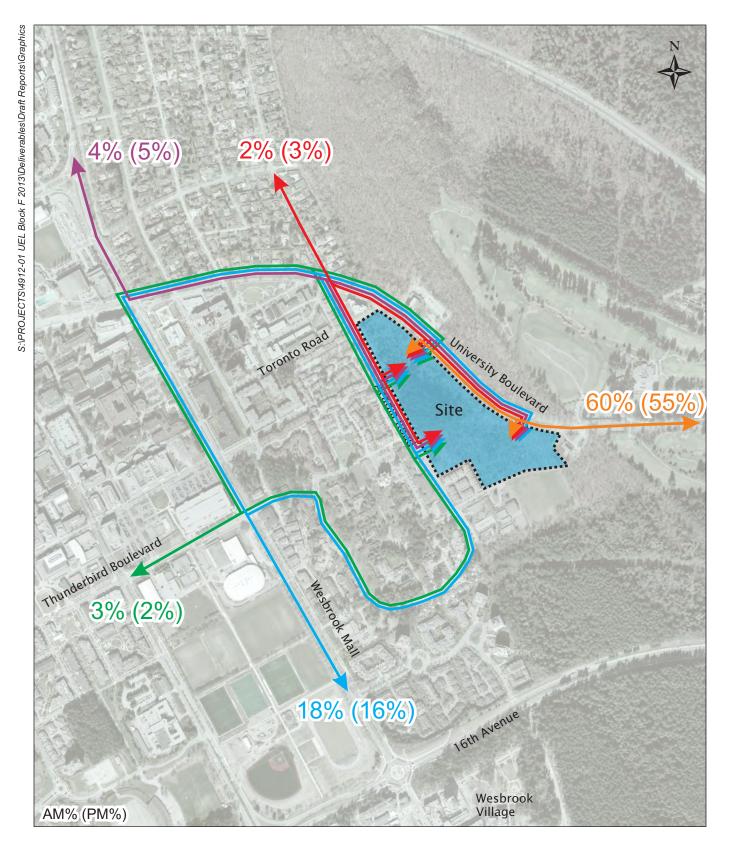
5.3 Site Vehicle Trip Generation and Distribution

Vehicle trip generation for the proposed development was estimated using trip rates observed from residential development located at the UBC South Campus area, as well as trip rates published in the Institute of Transportation Engineer's (ITE) Trip Generation Report (9th Edition). ITE Trip rates for the non-residential uses were reduced by 30% to account for internal capture and the Master Plan's proximity to the UBC Campus and transit services, resulting in higher percentage of non-vehicular trips. The UBC South Campus trip rates were left unchanged as these already account for internal capture and mode split. **Table 5.3** presents the vehicle trip rates used for the Weekday AM and PM Peak periods.

Table 5.3: Site Vehicle Trip Rates

Use	Source	Week	day AM	Peak	Week	day PM	Peak
USE	Jource	In	Out	Total	In	Out	Total
Residential	Bunt Trip Rates collected from UBC South Campus Area	0.13	0.18	0.31	0.20	0.09	0.29
Community Building (excluding Daycare)	ITE Recreational Community Centre (495) less 30%	0.95	0.49	1.44	0.94	0.98	1.92
Daycare (40 Children)	ITE Day Care Centre less 30%	0.30	0.26	0.56	0.26	0.30	0.57
Grocery Store	ITE Supermarket (850) less 30%	1.48	0.9	2.38	3.39	3.25	6.64
Restaurant/Café	ITE High-Turnover (Sit Down) Restaurant (932) less 30%	4.16	3.41	7.57	4.14	2.76	6.90

Table 5.4 presents the vehicle trip estimates for the current site plan. These vehicle volumes are used for the analysis in Section 5.3.


Table 5.4: Site Vehicle Trip Estimates

Land Use	Size	Week	day AM	Peak	Weekday PM Peak			
	5126	In	Out	Total	In	Out	Total	
Residential	1,300 units	171	233	404	260	116	376	
Community Building (excl. Daycare)	15,000 ft ²	14	7	21	14	15	29	
Daycare (40 Children)	4,800 ft ²	12	10	22	10	12	22	
Retail	15,000 ft ²	34	28	62	40	32	72	
Grocery	15,000 ft ²	22	14	36	51	49	100	
	Total	253	292	545	375	224	599	
	Pass-by Trips	28	28	56	45	45	90	
То	tal New Trips	225	264	489	330	179	509	

The development is expected to generate approximately 550 and 600 vehicle trips per hour during the morning and afternoon peak-hour periods, respectively. Approximately 55 to 90 of these trips are assumed to be pass-by trips from the existing neighbourhood. The ITE Trip Generation Handbook (2nd Edition) identifies weekday PM peak hour pass-by for a supermarket between 25% and 45%. Considering this and the isolation of the site from Vancouver, pass-by was assumed to be 50% of the inbound retail trips.

Vehicle trip distribution pattern for the development is established based on existing traffic patterns and anticipated origin and destinations of site traffic. University Boulevard was the primary road for the residential, office and amenity uses at approximately 70% of the trips. The retail use has a relatively even distribution split between the west (University Boulevard), north (Acadia Road and Wesbrook Mall), south (Wesbrook Mall) and the neighbouring Acadia Neighbourhood.

The approximate total distribution of site trips is summarized in **Table 5.5**, while the same information is also presented graphically in **Exhibit 5.2**. The total site trips are presented in **Exhibit 5.3**. Negative numbers in this exhibit represent changes in the existing volumes due to the re-routing of the pass-by trips.

Exhibit 5.2 Trip Distribution Pattern

UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS

Exhibit 5.3 Site Peak Hour Vehicle Volumes

UEL Block F Master Plan Transportation Assessment 4912.01 April 2015 Scale NTS

Table 5.5: Trip Distribution Pattern

Direction	Potential Route (s)	Destination	АМ	РМ
East	University Boulevard	University Boulevard	60%	55%
North	Acadia Road	Acadia Road	2%	3%
North	University Boulevard	Wesbrook Mall	4%	5%
South	University Boulevard, Osoyoos Crescent	Wesbrook Mall	18%	16%
West	University Boulevard, Osoyoos Crescent	Thunderbird Boulevard	3%	2%
		Total	87%	81%

There is an additional 13% -19% of the site trips do not leave the study area and would be primarily to/from the Acadia neighbourhood. From Table 5.4, over half of the site development traffic is expected to orient to/from the East. With a total of 600 vehicle trips predicted for the Weekday AM and PM peak periods, this means that approximately 330 vehicle trips (240 to 270 new trips) are expected to travel to/from the east.

Anticipated westbound volumes along University Boulevard east of the site are presented in **Exhibit 5.4** and eastbound volumes are presented in **Exhibit 5.5**.

Exhibit 5.6 summarizes Total 2030 volumes for the AM and PM Peak Periods including background volumes, pass-by trips, new site trips and diverted trips from the Acadia neighbourhood. For the purpose of the traffic analysis, it was assumed that 70% of existing vehicles using Toronto Road to travel between Acadia Road south and University Boulevard east would be diverted through the site given the shorter travel distance that is provided by the site. This corresponds to approximately 120 vehicles during the morning peak and 140 vehicles during the afternoon peak.

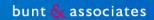


Exhibit 5.4: Future Westbound Volumes along University Boulevard

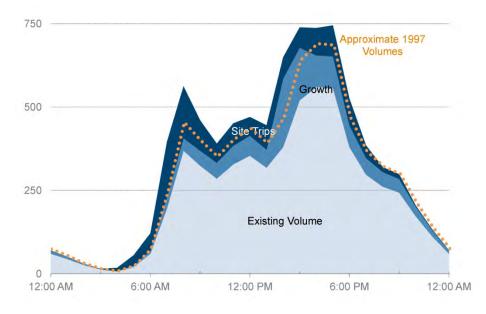


Exhibit 5.5: Future Eastbound Volumes along University Boulevard

UEL Block F Master Plan Transportation Assessment- Draft Report #2 bunt & associates | Project No. 4912.01 April 8, 2015

Exhibit 5.6 Total 2030 Peak Hour Vehicle Volumes

UEL Block F Mater Plan Transportation Assessment4912.01April 2015Scale NTS

5.4 Future Traffic Analysis (2030)

The following presents the Capacity Analysis for the future scenarios. Model outputs are included in **Appendix B**.

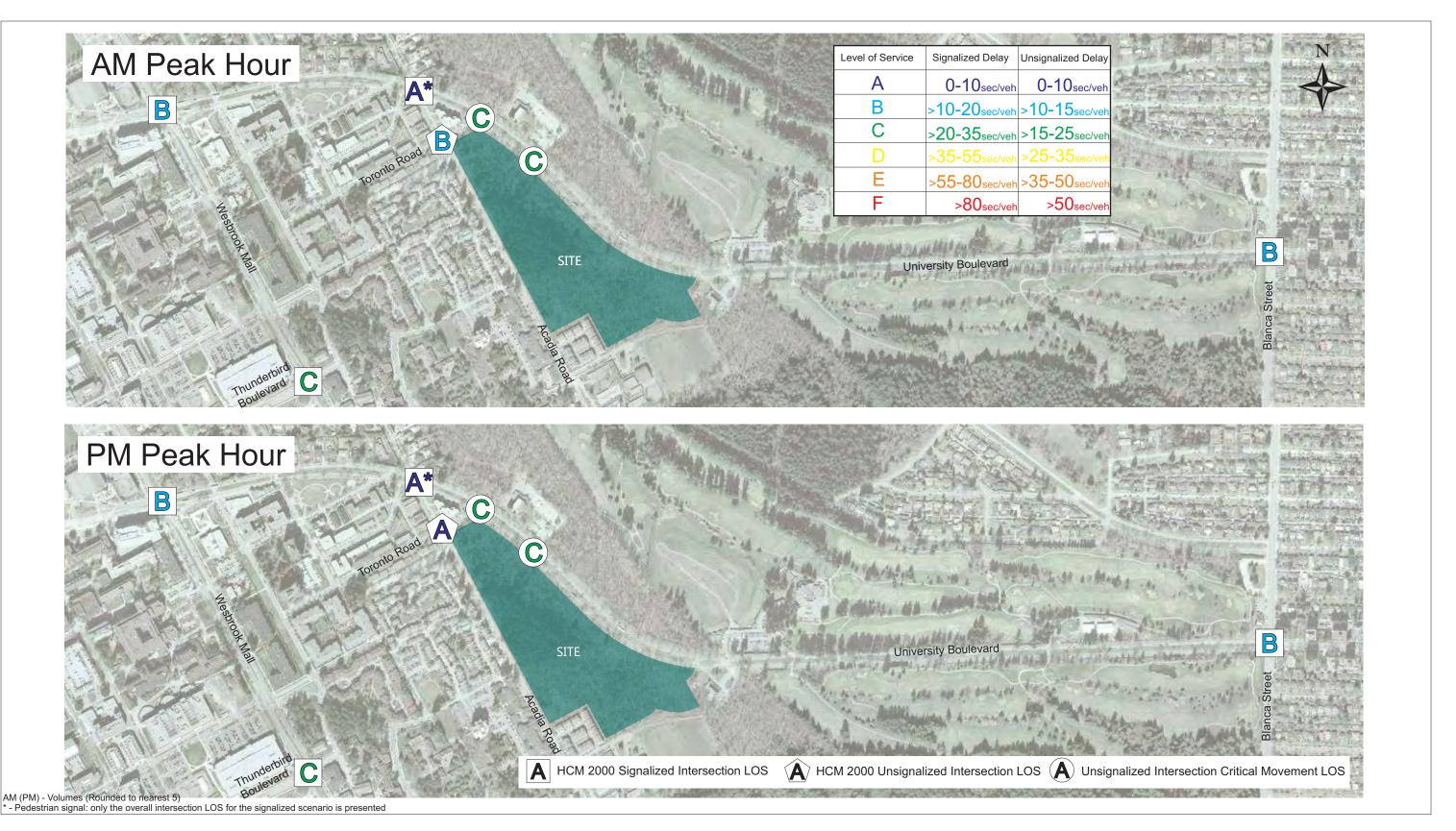
5.4.1 Background 2030 Conditions

Table 5.6 summarizes the intersection performances for the background traffic conditions. The v/c ratio, LOS, and 95th percentile queues for the critical movements of each approach are presented. Intersection LOS Summary is also presented graphically in **Exhibit 5.7**.

Table 5.6: Background 2030 Conditions

	Critical			АМ	РМ			
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)	
Signalized Intersection								
	Overall	0.66	С	-	0.81	С	-	
	EB L	0.34	В	22	0.86	D	68	
Wesbrook Mall (NB/SB) & Thunderbird Blvd (EB/WB)	WB L	0.46	С	23	0.54	С	23	
	NB T/R	0.75	В	113	0.47	В	62	
	SB T	0.66	С	63	0.88	D	137	
	Overall	0.41	В	-	0.43	В	-	
	EB L/T/R	0.20	С	12	0.51	С	33	
Wesbrook Mall (NB/SB) &	WB L	0.39	В	32	0.22	В	15	
University Blvd (EB/WB)	NB T	0.47	В	40	0.39	В	39	
	SB L	-	-	-	0.48	В	40	
	SB T/R	0.34	В	35	-	-	-	
	Overall	0.70	В	-	0.55	В	-	
	EB L	0.56	В	21	0.71	В	21	
University Blvd (EB/WB) &	WB L	-	-	-	0.52	С	27	
Blanca St (NB/SB)	WB T	0.74	В	86	-	-	-	
	NB L	0.61	С	34	0.21	В	15	
	SB L/T	0.38	В	23	0.08	В	15	

UEL Block F Master Plan Transportation Assessment- Draft Report #2 bunt & associates | Project No. 4912.01 April 8, 2015


Table 5.6: Background 2030 Conditions (Cont'd)

	Critical			АМ	РМ			
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)	
Signalized Intersection								
	Overall	0.67	A	-	0.51	А	-	
University Blvd (EB/WB) &	EB L/T/R	0.40	А	30	0.53	А	48	
Acadia Rd (NB/SB)	WB L/T/R	0.70	А	71	0.30	А	22	
(Signalized)	NB L/T/R	0.56	С	27	0.26	В	9	
	SB L/T/R	0.31	В	17	0.39	В	14	
University Blvd (EB/W B) &	EB L/T/R	0.01	А	1	0.01	А	0.1	
	WB L/T/R	0.00	А	0	0.01	А	0.1	
Acadia Rd (NB/SB) (Unsignalized)	NB L/T/R	0.67	E	32	0.14	С	4	
	SB L/T/R	0.37	D	13	0.23	С	7	
Unsignalized Intersection								
	EB L/T/R	-	А	-	-	А	-	
Acadia Rd (EB/WB) &	WB L/T/R	-	В	-	-	А	-	
Toronto Rd (NB/SB) (4-way Stop)	NB L/T/R	-	В	-	-	А	-	
	SB L/T/R	-	А	-	-	А		
University Blvd (NB/SB) &	NB L/T	0.25	А	8	0.13	А	3	
Toronto Rd (EB/WB)	EB L/R	0.39	С	14	0.41	С	15	
University Blvd (NB/SB) &	SB L/T	0.03	А	1	0.00	А	0.1	
University Chapel (EB/WB)	WB L/R	0.08	С	2	0.08	С	2	

Notes: a) "-" represents a value that is not calculated by Synchro;

b) **Bolded** results indicate an LOS F, a v/c ratio > 1.0 or a 95th percentile queue that exceeds its physical storage space.

c) EB, WB, NB, and SB represent eastbound, westbound, northbound, and southbound, respectively. d) L, T, R represent left, through, and right, respectively.

Exhibit 5.7 Background 2030 Intersection LOS Summary

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

Overall, levels of service of the unsignalized intersections during the weekday AM and PM peak hours are satisfactory, generally ranging from LOS 'A' to 'C'. In addition, all movements are shown to operate with low v/c ratios and short 95^{th} percentile queue lengths.

The pedestrian-actuated signal at University Boulevard and Acadia Road operates at acceptable levels with low v/c ratios and queues both during the time when the signal is being called by pedestrians or when no called is made. The only exception is the northbound movement at morning peak hour, where longer delays are predicted when no pedestrian call is made at the intersection. However, it is expected that the actual intersection operations would be between the signalized and unsignalized scenarios.

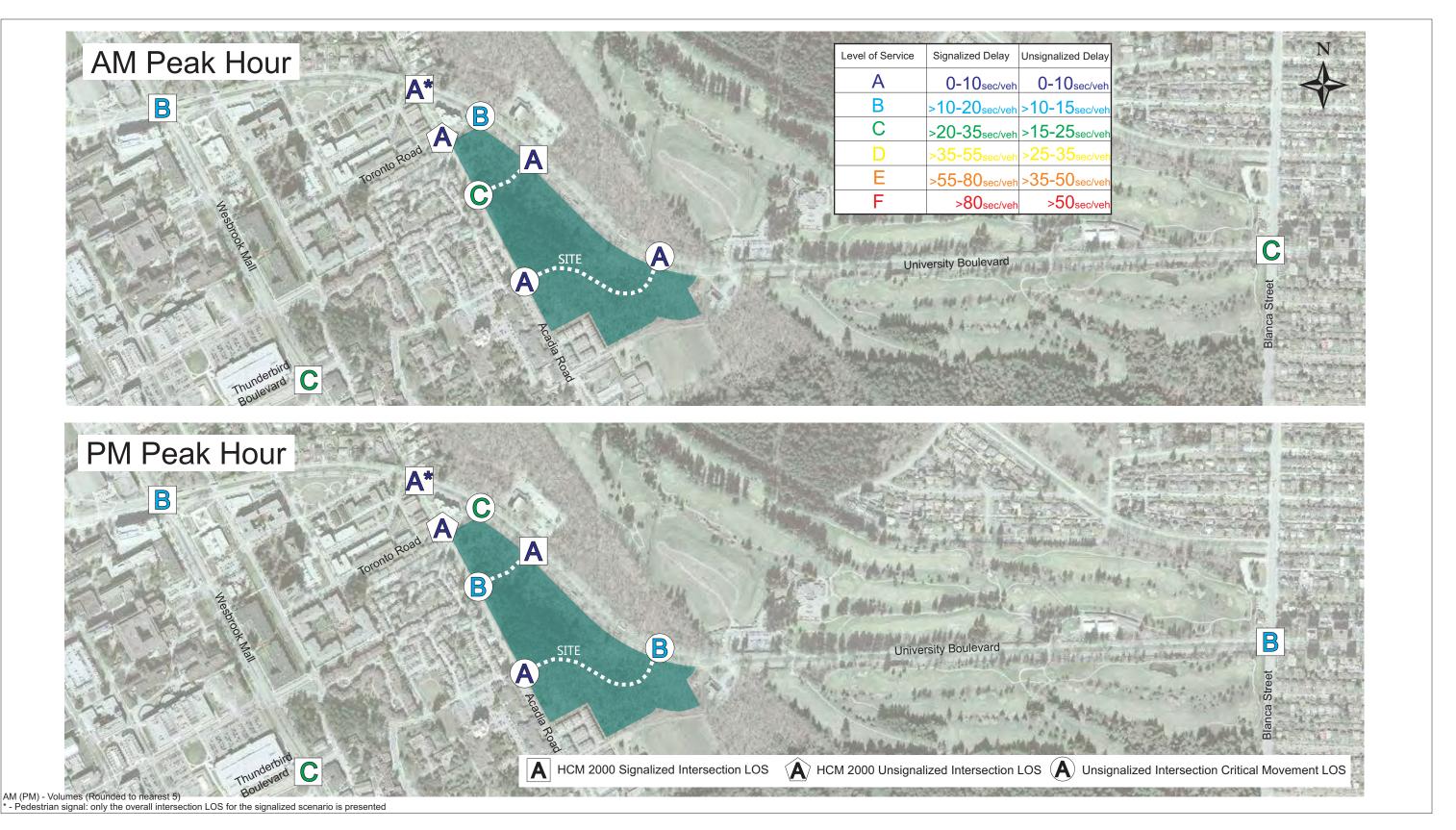

5.4.2 Total 2030 Conditions

Table 5.7 summarizes the intersection performances for the Total traffic conditions. The v/c ratio, LOS, and 95th percentile queues for the critical movements of each approach are presented. Intersection LOS Summary is also presented graphically in **Exhibit 5.8**.

The intersection of University Boulevard & Road A are analysed as both a signal and as a stop controlled intersection, while the Road B & Acadia Road intersection is analysed as a roundabout.

	Critical			АМ		РМ			
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)		
Signalized Intersection									
	Overall	0.72	С	-	0.82	С	-		
Wesbrook Mall (NB/SB) & Thunderbird Blvd (EB/WB)	EB L	0.33	В	22	0.81	С	62		
	WB L	0.60	С	33	0.62	С	28		
	NB T/R	0.81	С	149	0.57	В	79		
	SB T	0.66	С	73	0.91	D	147		
	Overall	0.43	В	-	0.45	В	-		
	EB L/T/R	0.21	С	13	0.51	С	33		
Wesbrook Mall (NB/SB) & University Blvd (EB/WB)	WB L	0.44	В	35	0.23	В	16		
, , ,	NB T	0.49	В	41	0.39	В	39		
	SB L	0.34	В	23	0.51	В	43		

Table 5.7: Total 2030 Conditions

Exhibit 5.8 Total 2030 Intersection LOS Summary

UEL Block F Master Plan Transportation Assessment4912.01April 2015Scale NTS

Table 5.7: Total 2030 Conditions (Cont'd)

	Critical			АМ		РМ			
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)		
Movement Signalized Intersection Overall									
	Overall	0.82	С	-	0.60	В	-		
	EB L	0.82	D	44	0.55	В	30		
	EB T	0.56	В	63	0.81	С	118		
University Blvd (EB/WB) & Blanca St (NB/SB)	WB L	0.38	В	17	0.75	D	34		
(As pre-timed)	WB T	0.78	В	108	0.58	В	64		
	NB L	0.83	D	55	0.29	В	20		
	NB T	0.57	С	50	0.35	В	34		
	SB L/T	0.47	С	28	0.20	В	15		
	Overall	0.70	А	-	0.55	А	-		
University Blvd (EB/WB) &	EB L/T/R	0.44	А	34	0.57	А	56		
Acadia Rd (NB/SB)	WB L/T/R	0.72	А	77	0.30	А	23		
(Signalized)	NB L/T/R	0.63	С	30	0.40	В	15		
	SB L/T/R	0.31	В	17	0.43	В	16		
	Overall	0.64	А	-	0.52	А	-		
	SB T/R	0.09	С	5	0.16	В	7		
University Blvd (NB/SB) & Road A (EB/WB)	NB L	0.12	С	6	0.06	В	4		
(Improved - Signalized)	NB T/R	0.10	С	0	0.08	В	6		
	EB L/T/R	0.41	А	24	0.58	А	49		
	WB L/T/R	0.71	А	60	0.31	А	20		

Table 5.7: Total 2030 Conditions (Cont'd)

	Critical			АМ		РМ			
Intersection	Movement	V/C	LOS	95th Percentile Queue (m)	V/C	LOS	95th Percentile Queue (m)		
Unsignalized Intersection									
	EB L/T/R	0.01	А	1	0.01	А	1		
University Blvd (EB/WB) & Acadia Rd (NB/SB)	WB L/T/R	0.00	А	0	0.01	А	1		
(Unsignalized)	NB L/T/R	0.83	F	48	0.33	С	10		
	SB L/T/R	0.42	D	15	0.35	С	24		
	EB L/T/R	-	А	-	-	А	-		
Acadia Rd (NB/SB) & Toronto Rd (EB/WB)	WB L/T/R	-	А	-	-	А	-		
(4-way Stop)	NB L/T/R	-	А	-	-	А	-		
	SB L/T/R	-	А	-	-	А	-		
University Blvd (NB/SB) &	NB L/T	0.11	А	3	0.05	А	1		
Toronto Rd (EB/WB)	EB L/R	0.24	В	13	0.28	С	15		
Acadia Rd (NB/SB) &	WB L/R	0.22	С	6	0.13	А	4		
Road A (EB/WB)	SB L/T	0.01	А	1	0.12	В	1		
Acadia Rd (NB/SB) &	WB L/R	0.22	С	15	0.10	В	3		
Road B (EB/WB)	SB L/T	0.01	А	1	0.01	А	1		
	NB L	0.19	F	5	0.07	D	2		
University Blvd (NB/SB) &	NB T/R	0.30	В	10	0.41	С	15		
Road A (EB/WB) (Unsignalized)	SB L	0.23	F	6	0.89	F	24		
	WB L	0.21	А	6	0.23	В	7		

Notes: a) "-" represents a value that is not calculated by Synchro.

b) **Bolded** results indicate an LOS F, a v/c ratio > 1.0 or a 95th percentile queue that exceeds its physical storage space.

- c) "Err" represents a value that is too high for Synchro to calculate.
- d) EB, WB, NB, and SB represent eastbound, westbound, northbound, and southbound, respectively.
- e) L, T, R represent left, through, and right, respectively.

Overall, levels of service of the unsignalized intersections during the weekday AM and PM peak hours are satisfactory, generally ranging from LOS 'A' to 'C'. In addition, all movements are shown to operate with low v/c ratios and short 95^{th} percentile queue lengths.

The pedestrian-actuated signal at University Boulevard and Acadia Road operates at acceptable levels with low v/c ratios and queues both during the time when the signal is being called by pedestrians or when no call is made. Similar to the 2030 Background scenario, longer delays are predicted for the northbound movement at morning peak hour when no pedestrian call is made at the intersection. However, it is expected that the actual intersection operations would be between the signalized and unsignalized scenarios.

The site is predicted to add approximately 25 to 30 vehicles to the northbound approach of Acadia Road at University Boulevard in the Weekday peak-hour periods. Of these, approximately 15 (out of the 25-30 vehicles) are left-turns, with the rest being through movements.

The intersection of Road A & University Boulevard is predicted to operate with LOS 'A' for the peak-hour periods as a signalized intersection. Without a traffic signal, the northbound and southbound left-turn movements are predicted to operate with LOS 'F' for the build-out condition. However, as a sensitivity test, the intersection is also modelled with only Parcels A, B, C and D completed. Under this scenario, a stop-sign controlled intersection at Road A & University Boulevard is expected to operate well without any excessive delay.

Given this, while the Master Plan currently contemplates the provision of a traffic signal at Road A & University Boulevard, the implementation of the traffic signal at this location is not warranted in the early phase of the development and the intersection can be operated as a stop-controlled intersection. The need of a traffic signal at this intersection can be reassessed as the Master Plan continues to build-out in the future.

The proposed roundabout at Acadia Road & Road B was analyzed using Sidra. Performance under this control type is acceptable with results shown in **Table 5.8** while printouts from Sidra are provided in **Appendix B**.

		a Road bound	Acadia North	ı Road bound		ւd B bound
	v/c	LOS	v/c	LOS	v/c	LOS
AM Peak Hour	0.225	А	0.199	А	0.087	А
PM Peak Hour	0.117	А	0.161	А	0.061	А

Table 5.8: Total 2030 Conditions - Acadia Rd & Road B Roundabout

5.5 Construction Truck Movements

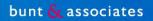
The effects of construction truck movements will be considered separately in the traffic management plan as part of the servicing, infrastructure, and detailed design requirements for each phase.

6. SUMMARY

Musqueam is proposing a mixed-use project on a 22 acre freehold parcel in 'Block F' of the University Endowment Lands, located on the south side of University Boulevard between the existing developments along Acadia Road, Pacific Spirit Park and the University Golf Course.

The build-out of the master plan is expected to occur over 10 to 12 years, with a maximum of 1,300 multi-family residential units, 30,000 ft² of retail, and a 19,800 ft² community building including a daycare centre, along with amenity spaces.

Parking for the development is provided based on best practice guidelines, recognizing the mixed-use nature of the development, while ensuring the viability of the commercial uses that are proposed in the Master Plan.


The development is expected to generate approximately 550 to 600 vehicle trips per hour during the morning and afternoon peak-hour periods at full build-out. These vehicle trips will be served by two access roads, providing connections between Acadia Road and University Boulevard.

Capacity analyses indicate that intersections in the study street network are expected to continue to operate satisfactorily with the master plan build-out vehicle volumes factored in, along with the background traffic growth that are expected from the redevelopment of the Acadia Neighbourhood and UBC.

While the Master Plan currently contemplates the provision of a traffic signal at Road A & University Boulevard, the implementation of the traffic signal at this location is not warranted in the early phase of the development and the intersection can be operated as a stop-controlled intersection. The need of a traffic signal at this intersection can be reassessed as the Master Plan continues to build-out in the future.

The roundabout proposed at Road B & Acadia Road can serve as a traffic calming measure on Acadia Road, and the intersection is also predicted to operate well without any operational issue.

Based on the analysis outlined in this study, it is concluded that the proposed form and density of the proposed development can be supported from a transportation perspective.

APPENDIX A

Synchro Model Output - Existing

(to be provided electronically only)

Queues 1: Wesbrook Mall & Thunderbird Blvd

	≯	+	*	4	+	•	1	1	ţ		
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	90	42	23	36	63	243	477	15	238	137	
v/c Ratio	0.26	0.07	0.04	0.19	0.24	0.38	0.43	0.06	0.49	0.25	
Control Delay	20.0	18.1	0.1	32.5	25.6	11.6	12.0	22.1	27.1	3.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.0	18.1	0.1	32.5	25.6	11.6	12.0	22.1	27.1	3.9	
Queue Length 50th (m)	8.0	3.6	0.0	4.3	5.4	16.8	37.4	1.5	27.5	0.0	
Queue Length 95th (m)	19.9	11.1	0.0	13.3	16.8	30.9	64.1	5.9	49.3	8.1	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	391	1319	1151	721	953	699	1258	370	755	743	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.03	0.02	0.05	0.07	0.35	0.38	0.04	0.32	0.18	
Intersection Summary											

HCM Signalized Intersection Capacity Analysis 1: Wesbrook Mall & Thunderbird Blvd

	۶	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻ	ef 👘		<u>۲</u>	ef 👘		ሻ	↑	1
Volume (vph)	83	39	21	33	41	17	224	380	59	14	219	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.96		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1803		1789	1846		1789	1883	1601
Flt Permitted	0.35	1.00	1.00	0.73	1.00		0.41	1.00		0.49	1.00	1.00
Satd. Flow (perm)	651	1883	1601	1374	1803		781	1846		924	1883	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	90	42	23	36	45	18	243	413	64	15	238	137
RTOR Reduction (vph)	0	0	17	0	16	0	0	5	0	0	0	101
Lane Group Flow (vph)	90	42	6	36	47	0	243	472	0	15	238	36
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	17.9	17.9	17.9	5.7	5.7		35.3	35.3		17.0	17.0	17.0
Effective Green, g (s)	17.9	17.9	17.9	5.7	5.7		35.3	35.3		17.0	17.0	17.0
Actuated g/C Ratio	0.27	0.27	0.27	0.09	0.09		0.54	0.54		0.26	0.26	0.26
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	285	516	439	120	157		614	999		240	490	417
v/s Ratio Prot	c0.03	0.02			0.03		0.08	c0.26			0.13	
v/s Ratio Perm	c0.06		0.00	0.03			0.14			0.02		0.02
v/c Ratio	0.32	0.08	0.01	0.30	0.30		0.40	0.47		0.06	0.49	0.09
Uniform Delay, d1	18.4	17.5	17.2	27.9	27.9		8.5	9.2		18.1	20.4	18.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.6	0.1	0.0	1.4	1.1		0.4	0.5		0.1	1.0	0.1
Delay (s)	19.0	17.6	17.2	29.3	28.9		8.9	9.7		18.3	21.4	18.3
Level of Service	В	В	В	С	С		А	А		В	С	В
Approach Delay (s)		18.4			29.1			9.4			20.2	
Approach LOS		В			С			А			С	
Intersection Summary												
HCM 2000 Control Delay			15.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.52									
Actuated Cycle Length (s)			65.2		um of los				24.0			
Intersection Capacity Utiliza	ation		58.1%	IC	U Level	of Service	è		В			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

	→	4	Ļ	•	•	Ť	*	*	Ŧ
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	46	187	197	222	22	333	96	91	305
v/c Ratio	0.09	0.29	0.28	0.27	0.04	0.35	0.19	0.17	0.22
Control Delay	17.3	12.3	12.2	2.7	12.4	22.6	7.0	12.9	15.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.3	12.3	12.2	2.7	12.4	22.6	7.0	12.9	15.9
Queue Length 50th (m)	3.3	14.0	14.8	0.0	1.7	20.0	0.0	7.1	13.2
Queue Length 95th (m)	10.7	25.6	26.7	9.4	5.3	31.1	10.5	15.2	28.6
Internal Link Dist (m)	106.7		487.7			585.5			116.0
Turn Bay Length (m)		40.0			25.0		50.0	75.0	
Base Capacity (vph)	676	768	1264	1290	791	1334	657	772	1570
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.24	0.16	0.17	0.03	0.25	0.15	0.12	0.19
Intersection Summary									

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	٠	+	*	4	+	•	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		۲	4	1	٦	<u></u>	1	٦	≜ ⊅	
Volume (vph)	1	28	14	249	104	204	20	306	88	84	273	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.98	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1799		1700	1752	1601	1789	3579	1601	1789	3564	
Flt Permitted		0.99		0.67	0.89	1.00	0.57	1.00	1.00	0.44	1.00	
Satd. Flow (perm)		1790		1204	1594	1601	1066	3579	1601	838	3564	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	30	15	271	113	222	22	333	96	91	297	8
RTOR Reduction (vph)	0	12	0	0	0	126	0	0	69	0	1	0
Lane Group Flow (vph)	0	34	0	187	197	96	22	333	27	91	304	0
Turn Type	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		12.4		27.6	27.6	27.6	19.3	17.6	17.6	28.1	23.4	
Effective Green, g (s)		12.4		27.6	27.6	27.6	19.3	17.6	17.6	28.1	23.4	
Actuated g/C Ratio		0.19		0.43	0.43	0.43	0.30	0.28	0.28	0.44	0.37	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		348		608	718	693	342	988	442	481	1309	
v/s Ratio Prot				c0.05	0.05		0.00	c0.09		c0.02	0.09	
v/s Ratio Perm		0.02		c0.08	0.07	0.06	0.02		0.02	0.06		
v/c Ratio		0.10		0.31	0.27	0.14	0.06	0.34	0.06	0.19	0.23	
Uniform Delay, d1		21.1		11.6	11.6	10.9	15.7	18.4	17.0	10.6	13.9	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.1		0.2	0.2	0.1	0.1	0.1	0.0	0.2	0.1	
Delay (s)		21.1		11.8	11.8	11.0	15.7	18.5	17.0	10.8	14.0	
Level of Service		С		В	В	В	В	В	В	В	В	
Approach Delay (s)		21.1			11.5			18.0			13.3	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.2	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.32									
Actuated Cycle Length (s)			63.7		um of los				15.0			
Intersection Capacity Utilization	on		47.6%	IC	U Level	of Service	9		А			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	-	+	Ť	ţ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	351	662	72	48
v/c Ratio	0.24	0.46	0.21	0.15
Control Delay	3.6	5.1	16.3	14.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	3.6	5.1	16.3	14.4
Queue Length 50th (m)	8.3	19.8	4.7	2.7
Queue Length 95th (m)	19.4	45.0	12.9	9.0
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1736	1748	675	627
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.20	0.38	0.11	0.08
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	≯	+	*	4	Ļ	•	•	1	*	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			4			4	
Volume (vph)	5	310	8	1	595	13	17	50	0	17	21	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		1.00			1.00			1.00			0.98	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1876			1878			1860			1812	
Flt Permitted		0.99			1.00			0.90			0.85	
Satd. Flow (perm)		1865			1878			1694			1562	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	337	9	1	647	14	18	54	0	18	23	7
RTOR Reduction (vph)	0	1	0	0	1	0	0	0	0	0	6	0
Lane Group Flow (vph)	0	350	0	0	661	0	0	72	0	0	42	0
Turn Type F	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		26.4			26.4			4.2			4.2	
Effective Green, g (s)		26.4			26.4			4.2			4.2	
Actuated g/C Ratio		0.68			0.68			0.11			0.11	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1275			1284			184			169	
v/s Ratio Prot												
v/s Ratio Perm		0.19			0.35			c0.04			0.03	
v/c Ratio		0.27			0.51			0.39			0.25	
Uniform Delay, d1		2.4			3.0			16.0			15.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.1			0.4			1.4			0.8	
Delay (s)		2.5			3.3			17.4			16.5	
Level of Service		А			А			В			В	
Approach Delay (s)		2.5			3.3			17.4			16.5	
Approach LOS		А			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			4.5	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacity r	atio		0.50									
Actuated Cycle Length (s)			38.6		um of lost				8.0			
Intersection Capacity Utilization			43.4%	IC	CU Level of	of Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{r}	∢	←	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	50	19	69	43	0	22	65	78	0	29	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	54	21	75	47	0	24	71	85	0	32	3
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	77	122	179	35								
Volume Left (vph)	2	75	24	0								
Volume Right (vph)	21	0	85	3								
Hadj (s)	-0.12	0.16	-0.22	-0.02								
Departure Headway (s)	4.4	4.6	4.2	4.6								
Degree Utilization, x	0.09	0.16	0.21	0.04								
Capacity (veh/h)	771	733	818	737								
Control Delay (s)	7.9	8.5	8.3	7.8								
Approach Delay (s)	7.9	8.5	8.3	7.8								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.2									
Level of Service			А									
Intersection Capacity Utilizati	ion		35.5%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	-*	7	~	•	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		Ä	Y	
Volume (veh/h)	320	0	116	595	3	133
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	348	0	126	647	3	145
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139					
pX, platoon unblocked						
vC, conflicting volume			348		1247	348
vC1, stage 1 conf vol					348	
vC2, stage 2 conf vol					899	
vCu, unblocked vol			348		1247	348
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			90		99	79
cM capacity (veh/h)			1211		282	695
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	348	0	773	148		
Volume Left	0	0	126	3		
Volume Right	0	0	0	145		
cSH	1700	1700	1211	674		
Volume to Capacity	0.20	0.00	0.10	0.22		
Queue Length 95th (m)	0.0	0.0	2.6	6.3		
Control Delay (s)	0.0	0.0	2.5	11.8		
Lane LOS			А	В		
Approach Delay (s)	0.0		2.5	11.8		
Approach LOS				В		
Intersection Summary						
Average Delay			2.9			
Intersection Capacity Utiliza	ation		54.5%	IC	U Level o	of Service
Analysis Period (min)			15			
, ()			. 5			

	Ľ	×	×	۲	í,	¥
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		र्भ	4		Y	
Volume (veh/h)	14	435	705	18	7	5
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	15	473	766	20	8	5
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		Raised	Raised			
Median storage veh)		1	1			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	786				1279	776
vC1, stage 1 conf vol					776	
vC2, stage 2 conf vol					503	
vCu, unblocked vol	786				1279	776
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	98				98	99
cM capacity (veh/h)	833				315	397
Direction, Lane #	SE 1	NW 1	SW 1			
Volume Total	488	786	13			
Volume Left	400	00/	8			
Volume Right	0	20	o 5			
cSH	833	1700	345			
	0.02	0.46	0.04			
Volume to Capacity	0.02	0.40	0.04			
Queue Length 95th (m)	0.4	0.0	15.9			
Control Delay (s)		0.0	15.9 C			
Lane LOS	A	0.0				
Approach Delay (s)	0.5	0.0	15.9 C			
Approach LOS			C			
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utilization	on		48.2%	IC	CU Level o	of Service
Analysis Period (min)			15			

Queues 7: Blanca St & University Blvd

	-	\mathbf{F}	4	+	•	•	†	*	ţ	∢	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	373	82	104	565	68	125	207	89	241	129	
v/c Ratio	0.30	0.11	0.23	0.65	0.09	0.29	0.29	0.15	0.20	0.19	
Control Delay	11.1	3.1	11.5	17.1	3.2	15.1	14.2	12.9	13.0	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.1	3.1	11.5	17.1	3.2	15.1	14.2	12.9	13.0	3.6	
Queue Length 50th (m)	12.7	0.0	6.5	45.3	0.0	9.2	15.2	6.2	9.0	0.0	
Queue Length 95th (m)	20.6	5.7	15.0	74.8	5.2	19.9	28.3	14.0	15.6	8.4	
Internal Link Dist (m)	1111.2			86.8			126.9		80.4		
Turn Bay Length (m)		10.0			35.0			10.0		10.0	
Base Capacity (vph)	1226	778	457	863	770	434	721	613	1179	693	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.11	0.23	0.65	0.09	0.29	0.29	0.15	0.20	0.19	
Intersection Summary											

HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	۶	-	\mathbf{F}	4	+	•	•	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1	1	•	1	5	•	1			1
Volume (vph)	63	281	75	96	520	63	115	190	82	48	174	119
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor		0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)		3546	1601	1789	1883	1601	1789	1883	1601		3540	1601
Flt Permitted		0.75	1.00	0.53	1.00	1.00	0.60	1.00	1.00		0.86	1.00
Satd. Flow (perm)		2678	1601	998	1883	1601	1134	1883	1601		3077	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	68	305	82	104	565	68	125	207	89	52	189	129
RTOR Reduction (vph)	0	0	44	0	0	37	0	0	0	0	0	80
Lane Group Flow (vph)	0	373	38	104	565	31	125	207	89	0	241	49
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)		27.5	27.5	27.5	27.5	27.5	23.0	23.0	23.0		23.0	23.0
Effective Green, g (s)		27.5	27.5	27.5	27.5	27.5	23.0	23.0	23.0		23.0	23.0
Actuated g/C Ratio		0.46	0.46	0.46	0.46	0.46	0.38	0.38	0.38		0.38	0.38
Clearance Time (s)		4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Grp Cap (vph)		1227	733	457	863	733	434	721	613		1179	613
v/s Ratio Prot					c0.30			0.11				
v/s Ratio Perm		0.14	0.02	0.10		0.02	c0.11		0.06		0.08	0.03
v/c Ratio		0.30	0.05	0.23	0.65	0.04	0.29	0.29	0.15		0.20	0.08
Uniform Delay, d1		10.2	9.0	9.8	12.6	9.0	12.8	12.8	12.1		12.4	11.8
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2		0.6	0.1	1.2	3.9	0.1	1.7	1.0	0.5		0.4	0.3
Delay (s)		10.9	9.1	11.0	16.4	9.1	14.5	13.8	12.6		12.8	12.0
Level of Service		В	А	В	В	А	В	В	В		В	В
Approach Delay (s)		10.6			15.0			13.8			12.5	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			13.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.49									
Actuated Cycle Length (s)	-		60.0	S	um of lost	t time (s)			9.5			
Intersection Capacity Utilizat	ion		69.0%	IC	U Level o	of Service	<u>;</u>		С			
Analysis Period (min)			15									

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۶	-	*	•	ł	×	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	5	310	8	1	595	13	17	50	0	17	21	6
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	337	9	1	647	14	18	54	0	18	23	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	661			346			1026	1015	341	1035	1012	654
vC1, stage 1 conf vol							352	352		656	656	
vC2, stage 2 conf vol							674	663		379	357	
vCu, unblocked vol	661			346			1026	1015	341	1035	1012	654
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			100			94	84	100	94	93	99
cM capacity (veh/h)	927			1213			314	343	701	315	346	467
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	351	662	73	48								
Volume Left	5	1	18	18								
Volume Right	9	14	0	7								
cSH	927	1213	335	345								
Volume to Capacity	0.01	0.00	0.22	0.14								
Queue Length 95th (m)	0.1	0.0	6.2	3.6								
Control Delay (s)	0.2	0.0	18.7	17.1								
Lane LOS	А	А	С	С								
Approach Delay (s)	0.2	0.0	18.7	17.1								
Approach LOS			С	С								
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilizat	tion		43.4%	IC	CU Level of	of Service			А			
Analysis Period (min)			15									

Queues 1: Wesbrook Mall & Thunderbird Blvd

	≯	+	\mathbf{F}	4	+	•	Ť	1	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	242	57	125	72	72	87	384	58	452	83	
v/c Ratio	0.76	0.10	0.23	0.36	0.25	0.22	0.41	0.17	0.71	0.13	
Control Delay	36.6	17.1	5.0	32.1	16.1	10.5	11.7	20.7	30.3	0.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.6	17.1	5.0	32.1	16.1	10.5	11.7	20.7	30.3	0.4	
Queue Length 50th (m)	23.7	5.0	0.0	8.4	3.3	5.2	26.5	5.3	51.2	0.0	
Queue Length 95th (m)	#51.8	12.5	9.9	19.8	13.5	12.6	49.4	14.9	#107.3	0.0	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	320	1169	1041	568	743	678	1370	340	636	656	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.05	0.12	0.13	0.10	0.13	0.28	0.17	0.71	0.13	
Intersection Summary											

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

HCM Signalized Intersection Capacity Analysis 1: Wesbrook Mall & Thunderbird Blvd

	۶	-	\mathbf{r}	4	+	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	1	et		٢	4Î		٢	•	7
Volume (vph)	223	52	115	66	27	40	80	308	45	53	416	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.91		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1715		1789	1847		1789	1883	1601
Flt Permitted	0.38	1.00	1.00	0.72	1.00		0.23	1.00		0.53	1.00	1.00
Satd. Flow (perm)	719	1883	1601	1356	1715		431	1847		1006	1883	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	242	57	125	72	29	43	87	335	49	58	452	83
RTOR Reduction (vph)	0	0	87	0	38	0	0	5	0	0	0	56
Lane Group Flow (vph)	242	57	38	72	34	0	87	379	0	58	452	27
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	19.8	19.8	19.8	7.1	7.1		33.4	33.4		21.2	21.2	21.2
Effective Green, g (s)	19.8	19.8	19.8	7.1	7.1		33.4	33.4		21.2	21.2	21.2
Actuated g/C Ratio	0.30	0.30	0.30	0.11	0.11		0.51	0.51		0.33	0.33	0.33
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	326	571	486	147	186		352	946		327	612	520
v/s Ratio Prot	c0.07	0.03			0.02		0.02	c0.20			c0.24	
v/s Ratio Perm	c0.15		0.02	0.05			0.10			0.06		0.02
v/c Ratio	0.74	0.10	0.08	0.49	0.18		0.25	0.40		0.18	0.74	0.05
Uniform Delay, d1	19.0	16.3	16.2	27.3	26.4		10.0	9.8		15.8	19.5	15.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	8.8	0.1	0.1	2.6	0.5		0.4	0.4		0.4	5.0	0.1
Delay (s)	27.8	16.4	16.3	29.9	26.9		10.4	10.1		16.1	24.5	15.2
Level of Service	С	В	В	С	С		В	В		В	С	В
Approach Delay (s)		22.9			28.4			10.2			22.4	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			19.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity ratio			0.79									
Actuated Cycle Length (s)			65.2		um of los				24.0			
Intersection Capacity Utilization			61.2%	IC	U Level	of Service	<u>;</u>		В			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

	-	1	Ļ	•	•	Ť	1	1	Ļ	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	130	77	82	130	13	342	270	232	357	
v/c Ratio	0.19	0.10	0.08	0.13	0.02	0.26	0.36	0.35	0.20	
Control Delay	24.2	10.9	10.8	2.8	12.2	23.9	5.3	14.9	16.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	24.2	10.9	10.8	2.8	12.2	23.9	5.3	14.9	16.3	
Queue Length 50th (m)	14.1	5.6	6.0	0.0	1.0	21.2	0.0	19.7	15.7	
ueue Length 95th (m)	28.3	12.6	13.2	7.8	3.8	33.0	17.2	34.3	33.0	
ternal Link Dist (m)	106.7		487.7			585.5			116.0	
urn Bay Length (m)		40.0			25.0		50.0	75.0		
ase Capacity (vph)	645	752	1004	1017	691	1244	732	679	1650	
tarvation Cap Reductn	0	0	0	0	0	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	0	
educed v/c Ratio	0.20	0.10	0.08	0.13	0.02	0.27	0.37	0.34	0.22	
ntersection Summary										

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	۶	-	\mathbf{r}	4	+	*	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷		۲.	र्भ	1	٦	<u></u>	1	٦	≜ ⊅	
Volume (vph)	4	104	12	117	29	120	12	315	248	213	326	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.97	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1855		1700	1736	1601	1789	3579	1601	1789	3574	
Flt Permitted		0.99		0.45	0.91	1.00	0.54	1.00	1.00	0.46	1.00	
Satd. Flow (perm)		1842		802	1637	1601	1014	3579	1601	868	3574	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	4	113	13	127	32	130	13	342	270	232	354	3
RTOR Reduction (vph)	0	6	0	0	0	81	0	0	181	0	1	0
Lane Group Flow (vph)	0	124	0	77	82	49	13	342	89	232	356	0
	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		10.2		24.4	24.4	24.4	23.1	21.4	21.4	32.2	27.5	
Effective Green, g (s)		10.2		24.4	24.4	24.4	23.1	21.4	21.4	32.2	27.5	
Actuated g/C Ratio		0.16		0.38	0.38	0.38	0.36	0.33	0.33	0.50	0.43	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		290		444	633	604	382	1185	530	543	1521	
v/s Ratio Prot				c0.03	0.02		0.00	0.10		c0.05	0.10	
v/s Ratio Perm		c0.07		0.04	0.03	0.03	0.01		0.06	c0.16		
v/c Ratio		0.43		0.17	0.13	0.08	0.03	0.29	0.17	0.43	0.23	
Uniform Delay, d1		24.6		13.6	13.2	12.9	13.4	16.0	15.3	9.5	11.8	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.7		0.1	0.1	0.0	0.0	0.0	0.1	0.5	0.1	
Delay (s)		25.3		13.7	13.2	12.9	13.5	16.0	15.4	10.0	11.9	
Level of Service		С		В	В	В	В	В	В	В	В	
Approach Delay (s)		25.3			13.2			15.7			11.2	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.40									
Actuated Cycle Length (s)			64.6	S	um of lost	t time (s)			15.0			
Intersection Capacity Utilization			49.7%	IC	U Level o	of Service	Э		А			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	→	+	Ť	ţ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	579	332	38	69
v/c Ratio	0.40	0.23	0.12	0.20
Control Delay	4.7	3.6	13.6	13.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	4.7	3.6	13.6	13.4
Queue Length 50th (m)	15.7	7.3	2.2	3.7
Queue Length 95th (m)	36.0	17.6	7.0	10.1
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1781	1763	684	743
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.33	0.19	0.06	0.09
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۶	-	*	4	Ļ	•	•	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4 >			- 4 >			4			4	
Volume (vph)	5	515	13	4	280	22	16	17	3	17	37	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		1.00			0.99			0.99			0.98	
Flt Protected		1.00			1.00			0.98			0.99	
Satd. Flow (prot)		1876			1864			1823			1819	
Flt Permitted		1.00			1.00			0.82			0.90	
Satd. Flow (perm)		1873			1856			1534			1656	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	560	14	4	304	24	17	18	3	18	40	11
RTOR Reduction (vph)	0	1	0	0	4	0	0	3	0	0	10	0
Lane Group Flow (vph)	0	578	0	0	328	0	0	35	0	0	59	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		24.8			24.8			4.1			4.1	
Effective Green, g (s)		24.8			24.8			4.1			4.1	
Actuated g/C Ratio		0.67			0.67			0.11			0.11	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1258			1247			170			184	
v/s Ratio Prot												
v/s Ratio Perm		c0.31			0.18			0.02			c0.04	
v/c Ratio		0.46			0.26			0.21			0.32	
Uniform Delay, d1		2.9			2.4			14.9			15.1	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.3			0.1			0.6			1.0	
Delay (s)		3.1			2.5			15.5			16.1	
Level of Service		А			А			В			В	
Approach Delay (s)		3.1			2.5			15.5			16.1	
Approach LOS		А			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			4.3	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacity	ratio		0.44									
Actuated Cycle Length (s)			36.9		um of lost				8.0			
Intersection Capacity Utilization	n		41.3%	IC	CU Level of	of Service	;		А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis 4: Acadia Rd & Toronto Road

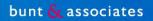
	۶	-	\mathbf{i}	4	+	•	1	Ť	1	5	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	1	55	18	70	24	0	18	26	103	1	38	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	60	20	76	26	0	20	28	112	1	41	4
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	80	102	160	47								
Volume Left (vph)	1	76	20	1								
Volume Right (vph)	20	0	112	4								
Hadj (s)	-0.11	0.18	-0.36	-0.02								
Departure Headway (s)	4.4	4.6	4.0	4.5								
Degree Utilization, x	0.10	0.13	0.18	0.06								
Capacity (veh/h)	781	733	852	752								
Control Delay (s)	7.8	8.3	7.9	7.8								
Approach Delay (s)	7.8	8.3	7.9	7.8								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.0									
Level of Service			А									
Intersection Capacity Utiliza	ation		33.8%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	-*	7	-	•	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		A	Y	
Volume (veh/h)	525	0	91	305	1	154
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	571	0	99	332	1	167
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139					
pX, platoon unblocked			0.87		0.87	0.87
vC, conflicting volume			571		1100	571
vC1, stage 1 conf vol					571	
vC2, stage 2 conf vol					529	
vCu, unblocked vol			435		1042	435
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			90		100	69
cM capacity (veh/h)			981		342	542
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	571	0	430	168		
Volume Left	0	0	99	1		
Volume Right	0	0	0	167		
cSH	1700	1700	981	540		
Volume to Capacity	0.34	0.00	0.10	0.31		
Queue Length 95th (m)	0.0	0.0	2.5	10.1		
Control Delay (s)	0.0	0.0	3.0	14.7		
Lane LOS			A	В		
Approach Delay (s)	0.0		3.0	14.7		
Approach LOS				В		
Intersection Summary						
Average Delay			3.2			
Intersection Capacity Utiliza	ation		38.2%	IC	U Level o	of Service
Analysis Period (min)			15			2

	Ľ	×	×	ť	í,	¥
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		र्स	4		¥	
Volume (veh/h)	3	665	395	1	17	5
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	3	723	429	1	18	5
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		Raised	Raised			
Median storage veh)		1	1			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	430				1159	430
vC1, stage 1 conf vol					430	
vC2, stage 2 conf vol					729	
vCu, unblocked vol	430				1159	430
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				95	99
cM capacity (veh/h)	1129				346	625
Direction, Lane #	SE 1	NW 1	SW 1			
Volume Total	726	430	24			
Volume Left	3	0	18			
Volume Right	0	1	5			
cSH	1129	1700	385			
Volume to Capacity	0.00	0.25	0.06			
Queue Length 95th (m)	0.1	0.0	1.5			
Control Delay (s)	0.1	0.0	15.0			
Lane LOS	А		В			
Approach Delay (s)	0.1	0.0	15.0			
Approach LOS			В			
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliz	ation		47.4%	IC	CU Level	of Service
Analysis Period (min)			15			

Queues 7: Blanca St & University Blvd

	-	\mathbf{r}	4	+	•	•	1	1	Ļ		
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	645	110	91	291	51	79	216	92	188	46	
v/c Ratio	0.52	0.15	0.33	0.36	0.07	0.16	0.28	0.14	0.15	0.07	
Control Delay	14.6	5.1	15.6	13.4	3.9	12.1	12.8	11.6	11.3	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.6	5.1	15.6	13.4	3.9	12.1	12.8	11.6	11.3	4.2	
Queue Length 50th (m)	26.2	2.0	6.4	20.7	0.0	5.2	15.0	6.0	6.4	0.0	
Queue Length 95th (m)	39.4	9.4	16.3	36.3	4.9	12.4	27.6	13.4	11.8	4.7	
Internal Link Dist (m)	1111.2			86.8			126.9		80.4		
Turn Bay Length (m)		10.0			35.0			10.0		10.0	
Base Capacity (vph)	1236	725	280	800	709	496	784	667	1247	693	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.52	0.15	0.33	0.36	0.07	0.16	0.28	0.14	0.15	0.07	
Intersection Summary											


HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	≯	+	*	4	ł	*	•	Ť	*	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1	۲.	•	1	1	•	1			1
Volume (vph)	111	482	101	84	268	47	73	199	85	50	123	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor		0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)		3545	1601	1789	1883	1601	1789	1883	1601		3528	1601
Flt Permitted		0.81	1.00	0.35	1.00	1.00	0.63	1.00	1.00		0.84	1.00
Satd. Flow (perm)		2908	1601	660	1883	1601	1193	1883	1601		2994	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	121	524	110	91	291	51	79	216	92	54	134	46
RTOR Reduction (vph)	0	0	45	0	0	29	0	0	0	0	0	27
Lane Group Flow (vph)	0	645	65	91	291	22	79	216	92	0	188	19
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)		25.5	25.5	25.5	25.5	25.5	25.0	25.0	25.0		25.0	25.0
Effective Green, g (s)		25.5	25.5	25.5	25.5	25.5	25.0	25.0	25.0		25.0	25.0
Actuated g/C Ratio		0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42		0.42	0.42
Clearance Time (s)		4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Grp Cap (vph)		1235	680	280	800	680	497	784	667		1247	667
v/s Ratio Prot					0.15			c0.11				
v/s Ratio Perm		c0.22	0.04	0.14		0.01	0.07		0.06		0.06	0.01
v/c Ratio		0.52	0.10	0.33	0.36	0.03	0.16	0.28	0.14		0.15	0.03
Uniform Delay, d1		12.7	10.3	11.5	11.7	10.1	10.9	11.5	10.8		10.9	10.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2		1.6	0.3	3.1	1.3	0.1	0.7	0.9	0.4		0.3	0.1
Delay (s)		14.3	10.6	14.6	13.0	10.1	11.6	12.4	11.3		11.1	10.4
Level of Service		В	В	В	В	В	В	В	В		В	В
Approach Delay (s)		13.8			13.0			12.0			11.0	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			12.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	ity ratio		0.40									
Actuated Cycle Length (s)	-		60.0	S	um of lost	time (s)			9.5			
Intersection Capacity Utilizati	on		61.8%			of Service	:		В			
Analysis Period (min)			15									

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	٦	-	\mathbf{r}	1	+	×.	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			\$	
Volume (veh/h)	5	515	13	4	280	22	16	17	3	17	37	10
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	560	14	4	304	24	17	18	3	18	40	11
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	328			574			934	915	567	915	910	316
vC1, stage 1 conf vol							578	578		325	325	
vC2, stage 2 conf vol							356	337		590	585	
vCu, unblocked vol	328			574			934	915	567	915	910	316
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			95	95	99	95	89	98
cM capacity (veh/h)	1231			999			349	375	523	356	374	724
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	579	333	39	70								
Volume Left	5	4	17	18								
Volume Right	14	24	3	11								
cSH	1231	999	371	399								
Volume to Capacity	0.00	0.00	0.11	0.17								
Queue Length 95th (m)	0.1	0.1	2.7	4.7								
Control Delay (s)	0.1	0.2	15.8	15.9								
Lane LOS	А	А	С	С								
Approach Delay (s)	0.1	0.2	15.8	15.9								
Approach LOS			С	С								
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utiliza	tion		41.3%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

APPENDIX B

Synchro Model Output - Future

(to be provided electronically only)

Queues 1: Wesbrook Mall & Thunderbird Blvd

	≯	-	\mathbf{r}	1	-	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	118	116	30	87	152	320	713	44	312	179	
v/c Ratio	0.33	0.20	0.06	0.45	0.52	0.60	0.74	0.23	0.65	0.33	
Control Delay	21.4	19.7	7.2	38.9	32.9	16.9	20.6	27.7	33.4	6.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.4	19.7	7.2	38.9	32.9	16.9	20.6	27.7	33.4	6.2	
Queue Length 50th (m)	12.2	12.0	0.0	12.0	17.4	26.3	76.7	5.2	41.1	0.0	
Queue Length 95th (m)	21.9	21.3	4.5	23.1	31.3	42.7	112.6	12.9	63.1	10.8	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	373	1178	1012	529	753	545	1097	234	593	627	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.10	0.03	0.16	0.20	0.59	0.65	0.19	0.53	0.29	
Intersection Summary											

	٦	→	$\mathbf{\hat{z}}$	4	←	•	•	Ť	1	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1	۲.	et 🗧		٦	et		٦	↑	7
Volume (vph)	97	95	25	71	84	41	262	445	139	36	256	147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.95		1.00	0.96		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1791		1789	1816		1789	1883	1601
Flt Permitted	0.42	1.00	1.00	0.68	1.00		0.30	1.00		0.39	1.00	1.00
Satd. Flow (perm)	800	1883	1601	1285	1791		568	1816		742	1883	1601
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	118	116	30	87	102	50	320	543	170	44	312	179
RTOR Reduction (vph)	0	0	20	0	22	0	0	10	0	0	0	134
Lane Group Flow (vph)	118	116	10	87	130	0	320	703	0	44	312	45
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	23.7	23.7	23.7	11.0	11.0		38.6	38.6		18.8	18.8	18.8
Effective Green, g (s)	23.7	23.7	23.7	11.0	11.0		38.6	38.6		18.8	18.8	18.8
Actuated g/C Ratio	0.32	0.32	0.32	0.15	0.15		0.52	0.52		0.25	0.25	0.25
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	343	601	511	190	265		524	943		188	476	405
v/s Ratio Prot	c0.03	0.06			c0.07		0.11	c0.39			0.17	
v/s Ratio Perm	0.08		0.01	0.07			0.20			0.06		0.03
v/c Ratio	0.34	0.19	0.02	0.46	0.49		0.61	0.75		0.23	0.66	0.11
Uniform Delay, d1	18.7	18.4	17.3	28.9	29.1		11.7	14.0		22.0	24.8	21.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.6	0.2	0.0	1.7	1.4		2.1	3.5		0.9	3.6	0.2
Delay (s)	19.3	18.5	17.3	30.7	30.5		13.9	17.5		22.9	28.4	21.5
Level of Service	В	В	В	С	С		В	В		С	С	С
Approach Delay (s)		18.7			30.6			16.3			25.7	
Approach LOS		В			С			В			С	
Intersection Summary												
HCM Average Control Dela	у		20.7	Н	CM Level	of Servic	ce		С			
HCM Volume to Capacity ra	atio		0.66									
Actuated Cycle Length (s)			74.3		um of lost				18.1			
Intersection Capacity Utiliza	ation		72.5%	IC	CU Level o	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

	→	4	-	•	1	Ť	1	1	Ŧ
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	61	245	259	326	28	462	126	151	423
v/c Ratio	0.13	0.39	0.36	0.38	0.05	0.48	0.24	0.31	0.33
Control Delay	17.9	14.1	13.6	2.9	12.3	24.3	6.8	13.9	18.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.9	14.1	13.6	2.9	12.3	24.3	6.8	13.9	18.8
Queue Length 50th (m)	4.4	19.0	20.3	0.0	2.1	28.8	0.0	12.2	19.1
Queue Length 95th (m)	12.3	32.6	34.2	8.5	5.8	40.1	9.6	20.8	35.0
Internal Link Dist (m)	106.7		487.7			585.5			116.0
Turn Bay Length (m)		40.0			25.0		50.0	75.0	
Base Capacity (vph)	672	748	1292	1303	784	1322	671	753	1486
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.33	0.20	0.25	0.04	0.35	0.19	0.20	0.28
Intersection Summary									

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	۶	+	*	4	Ļ	*	<	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		<u>۲</u>	र्स	1	ሻ	- † †	1	<u>۲</u>	∱ }	
Volume (vph)	1	33	16	291	122	267	23	379	103	124	339	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.98	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1799		1700	1752	1601	1789	3579	1601	1789	3566	
Flt Permitted		0.99		0.61	0.92	1.00	0.51	1.00	1.00	0.34	1.00	
Satd. Flow (perm)		1786		1086	1649	1601	951	3579	1601	635	3566	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	1	40	20	355	149	326	28	462	126	151	413	10
RTOR Reduction (vph)	0	18	0	0	0	185	0	0	92	0	1	0
Lane Group Flow (vph)	0	43	0	245	259	141	28	462	34	151	422	0
Turn Type	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		7.6		27.7	27.7	27.7	20.9	17.5	17.5	28.4	22.0	
Effective Green, g (s)		7.6		27.7	27.7	27.7	20.9	17.5	17.5	28.4	22.0	
Actuated g/C Ratio		0.12		0.43	0.43	0.43	0.33	0.27	0.27	0.44	0.34	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		212		624	738	692	355	977	437	424	1224	
v/s Ratio Prot				c0.10	0.09		0.00	c0.13		c0.04	0.12	
v/s Ratio Perm		0.02		c0.07	0.06	0.09	0.02		0.02	0.11		
v/c Ratio		0.20		0.39	0.35	0.20	0.08	0.47	0.08	0.36	0.34	
Uniform Delay, d1		25.5		12.3	12.2	11.3	14.8	19.4	17.3	11.2	15.7	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.3		0.3	0.2	0.1	0.1	0.1	0.0	0.5	0.1	
Delay (s)		25.9		12.6	12.4	11.4	14.9	19.6	17.3	11.7	15.8	
Level of Service		С		В	В	В	В	В	В	В	В	
Approach Delay (s)		25.9			12.1			18.9			14.7	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM Average Control Delay			15.2	Н	CM Leve	l of Servi	се		В			
HCM Volume to Capacity ratio			0.41									
Actuated Cycle Length (s)			64.1		um of los				11.0			
Intersection Capacity Utilization	l		51.5%	IC	U Level	of Service	e		А			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	→	+	Ť	Ļ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	493	868	158	95
v/c Ratio	0.38	0.66	0.45	0.26
Control Delay	5.4	9.2	22.8	18.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	5.4	9.2	22.8	18.5
Queue Length 50th (m)	16.0	39.7	10.6	5.6
Queue Length 95th (m)	29.7	70.5	26.8	16.6
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1538	1566	500	522
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.32	0.55	0.32	0.18
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	٭	-	\mathbf{F}	∢	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			4	
Volume (vph)	6	363	35	1	696	15	48	81	0	20	51	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.99			1.00			1.00			0.99	
Flt Protected		1.00			1.00			0.98			0.99	
Satd. Flow (prot)		1860			1878			1849			1836	
Flt Permitted		0.99			1.00			0.88			0.92	
Satd. Flow (perm)		1844			1878			1657			1711	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	7	443	43	1	849	18	59	99	0	24	62	9
RTOR Reduction (vph)	0	5	0	0	1	0	0	0	0	0	7	0
Lane Group Flow (vph)	0	488	0	0	867	0	0	158	0	0	88	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		30.9			30.9			7.9			7.9	
Effective Green, g (s)		30.9			30.9			7.9			7.9	
Actuated g/C Ratio		0.66			0.66			0.17			0.17	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1218			1240			280			289	
v/s Ratio Prot												
v/s Ratio Perm		0.26			0.46			c0.10			0.05	
v/c Ratio		0.40			0.70			0.56			0.31	
Uniform Delay, d1		3.7			5.0			17.9			17.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			1.7			2.6			0.6	
Delay (s)		3.9			6.8			20.5			17.6	
Level of Service		А			А			С			В	
Approach Delay (s)		3.9			6.8			20.5			17.6	
Approach LOS		А			А			С			В	
Intersection Summary												
HCM Average Control Delay			7.9	Н	CM Level	of Servic	e		А			
HCM Volume to Capacity ratio			0.67									
Actuated Cycle Length (s)			46.8	S	um of lost	time (s)			8.0			
Intersection Capacity Utilization	n		55.5%	IC	CU Level o	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	\mathbf{F}	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	59	22	169	50	0	26	126	98	0	89	4
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	2	72	27	206	61	0	32	154	120	0	109	5
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	101	267	305	113								
Volume Left (vph)	2	206	32	0								
Volume Right (vph)	27	0	120	5								
Hadj (s)	-0.12	0.19	-0.18	0.01								
Departure Headway (s)	5.3	5.3	4.9	5.4								
Degree Utilization, x	0.15	0.40	0.42	0.17								
Capacity (veh/h)	605	630	682	605								
Control Delay (s)	9.3	11.8	11.4	9.5								
Approach Delay (s)	9.3	11.8	11.4	9.5								
Approach LOS	А	В	В	А								
Intersection Summary												
Delay			11.0									
HCM Level of Service			В									
Intersection Capacity Utiliza	tion		46.0%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	~	7	1	*	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		Ä	Y	
Volume (veh/h)	374	0	224	696	4	181
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	456	0	273	849	5	221
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139					
pX, platoon unblocked			0.92		0.92	0.92
vC, conflicting volume			456		1851	456
vC1, stage 1 conf vol					456	
vC2, stage 2 conf vol					1395	
vCu, unblocked vol			362		1883	362
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			75		96	65
cM capacity (veh/h)			1098		139	626
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	456	0	1122	226		
Volume Left	0	0	273	5		
Volume Right	0	0	0	221		
cSH	1700	1700	1098	582		
Volume to Capacity	0.27	0.00	0.25	0.39		
Queue Length 95th (m)	0.0	0.0	7.5	13.9		
Control Delay (s)	0.0	0.0	5.8	15.0		
Lane LOS			А	С		
Approach Delay (s)	0.0		5.8	15.0		
Approach LOS				С		
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utiliz	ation		69.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	Ľ	×	×	۲	í,	×
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		નુ	4		Y	
Volume (veh/h)	16	534	913	21	8	6
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	20	651	1113	26	10	7
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		Raised	Raised			
Median storage veh)		1	1			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1139				1816	1126
vC1, stage 1 conf vol					1126	
vC2, stage 2 conf vol					690	
vCu, unblocked vol	1139				1816	1126
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	97				95	97
cM capacity (veh/h)	613				208	249
Direction, Lane #	SE 1	NW 1	SW 1			
Volume Total	671	1139	17			
Volume Left	20	0	10			
Volume Right	20	26	7			
cSH	613	1700	224			
	0.03	0.67				
Volume to Capacity	0.03		0.08 1.9			
Queue Length 95th (m) Control Delay (s)	0.7	0.0 0.0	22.4			
Lane LOS		0.0	22.4 C			
	A 0.9	0.0				
Approach Delay (s)	0.9	0.0	22.4			
Approach LOS			С			
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utilization Analysis Period (min)	on		59.3%	IC	CU Level o	of Service

Queues 7: Blanca St & University Blvd

	≯	-	\mathbf{r}	4	←	*	1	1	1	Ļ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	113	450	130	137	784	90	187	271	117	317	191	
v/c Ratio	0.56	0.43	0.14	0.30	0.74	0.10	0.61	0.49	0.25	0.38	0.32	
Control Delay	22.8	9.8	3.3	9.7	16.1	2.5	29.8	22.7	19.4	19.9	5.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.8	9.8	3.3	9.7	16.1	2.5	29.8	22.7	19.4	19.9	5.8	
Queue Length 50th (m)	7.8	28.1	2.2	7.8	64.0	0.4	19.2	26.8	10.7	15.8	1.5	
Queue Length 95th (m)	21.0	40.1	7.1	15.2	86.3	4.4	33.8	41.3	19.8	23.0	11.1	
Internal Link Dist (m)		1111.2			86.8			126.9		80.4		
Turn Bay Length (m)	50.0		10.0			35.0			10.0		10.0	
Base Capacity (vph)	203	1057	936	459	1057	935	308	550	468	837	591	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.56	0.43	0.14	0.30	0.74	0.10	0.61	0.49	0.25	0.38	0.32	
Intersection Summary												

HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	۶	-	\mathbf{F}	∢	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1	٦	•	1	٦	↑	1			1
Volume (vph)	93	369	107	112	643	74	153	222	96	56	204	157
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601		3541	1601
Flt Permitted	0.19	1.00	1.00	0.43	1.00	1.00	0.56	1.00	1.00		0.80	1.00
Satd. Flow (perm)	362	1883	1601	817	1883	1601	1054	1883	1601		2863	1601
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	113	450	130	137	784	90	187	271	117	68	249	191
RTOR Reduction (vph)	0	0	37	0	0	36	0	0	0	0	0	123
Lane Group Flow (vph)	113	450	93	137	784	54	187	271	117	0	317	68
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	36.5	36.5	36.5	36.5	36.5	36.5	19.0	19.0	19.0		19.0	19.0
Effective Green, g (s)	36.5	36.5	36.5	36.5	36.5	36.5	19.0	19.0	19.0		19.0	19.0
Actuated g/C Ratio	0.56	0.56	0.56	0.56	0.56	0.56	0.29	0.29	0.29		0.29	0.29
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Grp Cap (vph)	203	1057	899	459	1057	899	308	550	468		837	468
v/s Ratio Prot		0.24			c0.42			0.14				
v/s Ratio Perm	0.31		0.06	0.17		0.03	c0.18		0.07		0.11	0.04
v/c Ratio	0.56	0.43	0.10	0.30	0.74	0.06	0.61	0.49	0.25		0.38	0.15
Uniform Delay, d1	9.1	8.2	6.6	7.5	10.7	6.5	19.8	19.0	17.6		18.3	17.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2	10.6	1.3	0.2	1.7	4.7	0.1	8.6	3.1	1.3		1.3	0.7
Delay (s)	19.7	9.5	6.9	9.2	15.4	6.6	28.4	22.2	18.8		19.6	17.6
Level of Service	В	А	А	А	В	А	С	С	В		В	В
Approach Delay (s)		10.6			13.8			23.5			18.9	
Approach LOS		В			В			С			В	
Intersection Summary												
HCM Average Control Delay			15.9	H	CM Level	of Servic	ce		В			
HCM Volume to Capacity ra	tio		0.70									
Actuated Cycle Length (s)			65.0		um of lost				9.5			
Intersection Capacity Utilizat	tion		73.8%	IC	U Level o	of Service	;		D			
Analysis Period (min)			15									

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۶	-	\mathbf{r}	∢	←	•	•	Ť	1	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			.			4			- 4 >	
Volume (veh/h)	6	363	35	1	696	15	48	81	0	20	51	7
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	7	443	43	1	849	18	59	99	0	24	62	9
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	867			485			1379	1348	464	1388	1360	858
vC1, stage 1 conf vol							479	479		860	860	
vC2, stage 2 conf vol							900	870		528	500	
vCu, unblocked vol	867			485			1379	1348	464	1388	1360	858
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			100			71	62	100	89	76	98
cM capacity (veh/h)	777			1078			200	263	598	215	264	357
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	493	868	157	95								
Volume Left	7	1	59	24								
Volume Right	43	18	0	9								
cSH	777	1078	235	255								
Volume to Capacity	0.01	0.00	0.67	0.37								
Queue Length 95th (m)	0.2	0.0	32.1	12.5								
Control Delay (s)	0.3	0.0	46.5	27.3								
Lane LOS	А	А	E	D								
Approach Delay (s)	0.3	0.0	46.5	27.3								
Approach LOS			E	D								
Intersection Summary												
Average Delay			6.2									
Intersection Capacity Utiliza	tion		55.5%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

Queues 1: Wesbrook Mall & Thunderbird Blvd

	≯	-	$\mathbf{\hat{z}}$	4	+	1	1	1	Ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	284	66	147	84	86	102	449	67	529	97	
v/c Ratio	0.87	0.12	0.26	0.40	0.28	0.30	0.48	0.21	0.84	0.15	
Control Delay	49.3	17.3	4.8	33.1	16.0	11.8	13.0	22.2	39.6	1.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.3	17.3	4.8	33.1	16.0	11.8	13.0	22.2	39.6	1.0	
Queue Length 50th (m)	28.9	5.9	0.0	9.9	4.0	6.3	33.4	6.4	65.2	0.0	
Queue Length 95th (m)	#67.5	14.0	10.7	22.5	15.2	14.7	61.7	17.5	#137.0	1.7	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	326	1154	1038	556	739	645	1352	316	628	650	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.87	0.06	0.14	0.15	0.12	0.16	0.33	0.21	0.84	0.15	
Intersection Summary											

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٦	-	\mathbf{i}	∢	-	•	1	Ť	1	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•	1	ľ	4Î		ľ	et		ľ	•	1
Volume (vph)	261	61	135	77	32	47	94	360	53	62	487	89
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.91		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1716		1789	1847		1789	1883	1601
Flt Permitted	0.39	1.00	1.00	0.71	1.00		0.15	1.00		0.50	1.00	1.00
Satd. Flow (perm)	737	1883	1601	1345	1716		278	1847		948	1883	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	284	66	147	84	35	51	102	391	58	67	529	97
RTOR Reduction (vph)	0	0	102	0	45	0	0	5	0	0	0	66
Lane Group Flow (vph)	284	66	45	84	41	0	102	444	0	67	529	31
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	20.4	20.4	20.4	7.7	7.7		33.7	33.7		21.2	21.2	21.2
Effective Green, g (s)	20.4	20.4	20.4	7.7	7.7		33.7	33.7		21.2	21.2	21.2
Actuated g/C Ratio	0.31	0.31	0.31	0.12	0.12		0.51	0.51		0.32	0.32	0.32
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	332	581	494	156	199		292	941		304	603	513
v/s Ratio Prot	c0.09	0.04			0.02		0.03	c0.24			c0.28	
v/s Ratio Perm	c0.18		0.03	0.06			0.14			0.07		0.02
v/c Ratio	0.86	0.11	0.09	0.54	0.21		0.35	0.47		0.22	0.88	0.06
Uniform Delay, d1	20.5	16.4	16.3	27.5	26.4		11.4	10.5		16.4	21.2	15.6
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	18.9	0.1	0.1	3.5	0.5		0.7	0.5		0.5	13.9	0.1
Delay (s)	39.4	16.5	16.3	31.1	26.9		12.1	11.0		16.9	35.2	15.6
Level of Service	D	В	В	С	С		В	В		В	D	В
Approach Delay (s)		29.5			29.0			11.2			30.7	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			24.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.92									
Actuated Cycle Length (s)			66.1		um of lost				24.0			
Intersection Capacity Utilization	ation		66.9%	IC	U Level o	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

	-	1	-	•	1	Ť	1	1	ţ
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	153	91	95	152	15	401	315	271	418
v/c Ratio	0.31	0.15	0.13	0.18	0.03	0.43	0.48	0.46	0.24
Control Delay	25.8	11.4	11.2	2.8	12.1	25.6	6.3	16.2	16.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.8	11.4	11.2	2.8	12.1	25.6	6.3	16.2	16.4
Queue Length 50th (m)	17.1	6.8	7.1	0.0	1.1	25.5	0.0	23.6	18.8
Queue Length 95th (m)	32.7	14.5	14.9	8.3	4.1	38.5	18.4	40.1	38.4
Internal Link Dist (m)	106.7		487.7			585.5			116.0
Turn Bay Length (m)		40.0			25.0		50.0	75.0	
Base Capacity (vph)	517	612	949	1023	639	996	673	603	1772
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.15	0.10	0.15	0.02	0.40	0.47	0.45	0.24
Intersection Summary									

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	۶	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	र्भ	1	ሻ	- † †	1	ሻ	≜ ⊅	
Volume (vph)	5	122	14	137	34	140	14	369	290	249	381	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.97	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1855		1700	1736	1601	1789	3579	1601	1789	3573	
Flt Permitted		0.99		0.39	0.85	1.00	0.51	1.00	1.00	0.39	1.00	
Satd. Flow (perm)		1841		694	1517	1601	956	3579	1601	735	3573	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	133	15	149	37	152	15	401	315	271	414	4
RTOR Reduction (vph)	0	6	0	0	0	95	0	0	225	0	1	0
Lane Group Flow (vph)	0	147	0	91	95	57	15	401	90	271	417	0
Turn Type F	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		10.7		25.4	25.4	25.4	21.3	19.5	19.5	34.8	30.0	
Effective Green, g (s)		10.7		25.4	25.4	25.4	21.3	19.5	19.5	34.8	30.0	
Actuated g/C Ratio		0.16		0.37	0.37	0.37	0.31	0.29	0.29	0.51	0.44	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		288		416	599	596	320	1023	457	565	1571	
v/s Ratio Prot				c0.03	0.02		0.00	0.11		c0.09	0.12	
v/s Ratio Perm		c0.08		0.05	0.03	0.04	0.01		0.06	c0.16		
v/c Ratio		0.51		0.22	0.16	0.09	0.05	0.39	0.20	0.48	0.27	
Uniform Delay, d1		26.4		14.9	14.3	13.9	16.3	19.6	18.4	9.9	12.1	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.1		0.2	0.1	0.1	0.0	0.1	0.1	0.6	0.1	
Delay (s)		27.5		15.0	14.4	14.0	16.3	19.7	18.5	10.6	12.2	
Level of Service		С		В	В	В	В	В	В	В	В	
Approach Delay (s)		27.5			14.4			19.1			11.6	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			16.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity r	atio		0.46									
Actuated Cycle Length (s)			68.2		um of lost				15.0			
Intersection Capacity Utilization			64.6%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	-	+	Ť	ţ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	678	390	47	82
v/c Ratio	0.47	0.27	0.15	0.24
Control Delay	5.3	3.7	15.1	14.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	5.3	3.7	15.1	14.9
Queue Length 50th (m)	20.6	9.3	2.7	4.3
Queue Length 95th (m)	47.9	22.0	9.4	13.5
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1741	1724	608	663
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.39	0.23	0.08	0.12
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۶	-	\mathbf{F}	∢	←	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			\$	
Volume (vph)	6	603	15	5	328	26	19	20	4	20	43	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		1.00			0.99			0.99			0.98	
Flt Protected		1.00			1.00			0.98			0.99	
Satd. Flow (prot)		1876			1864			1821			1819	
Flt Permitted		1.00			0.99			0.82			0.89	
Satd. Flow (perm)		1871			1854			1521			1646	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	7	655	16	5	357	28	21	22	4	22	47	13
RTOR Reduction (vph)	0	1	0	0	4	0	0	4	0	0	12	0
Lane Group Flow (vph)	0	677	0	0	386	0	0	43	0	0	70	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		26.5			26.5			4.3			4.3	
Effective Green, g (s)		26.5			26.5			4.3			4.3	
Actuated g/C Ratio		0.68			0.68			0.11			0.11	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1277			1266			168			182	
v/s Ratio Prot												
v/s Ratio Perm		c0.36			0.21			0.03			c0.04	
v/c Ratio		0.53			0.30			0.26			0.39	
Uniform Delay, d1		3.1			2.5			15.8			16.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.4			0.1			0.8			1.4	
Delay (s)		3.5			2.6			16.6			17.4	
Level of Service		А			А			В			В	
Approach Delay (s)		3.5			2.6			16.6			17.4	
Approach LOS		А			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			4.6	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacity	ratio		0.51									
Actuated Cycle Length (s)			38.8		um of lost				8.0			
Intersection Capacity Utilization			47.3%	IC	CU Level o	of Service	<u>;</u>		А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis 4: Acadia Rd & Toronto Road

	≯	+	\mathbf{F}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	1	64	21	82	28	0	21	30	121	1	44	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	70	23	89	30	0	23	33	132	1	48	5
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	93	120	187	54								
Volume Left (vph)	1	89	23	1								
Volume Right (vph)	23	0	132	5								
Hadj (s)	-0.11	0.18	-0.36	-0.02								
Departure Headway (s)	4.5	4.7	4.1	4.6								
Degree Utilization, x	0.12	0.16	0.21	0.07								
Capacity (veh/h)	757	714	830	728								
Control Delay (s)	8.1	8.6	8.2	7.9								
Approach Delay (s)	8.1	8.6	8.2	7.9								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.3									
Level of Service			А									
Intersection Capacity Utilization	tion		36.2%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	-*	\mathbf{F}	*	•	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		Ä	Y	
Volume (veh/h)	614	0	106	357	1	180
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	667	0	115	388	1	196
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139					
pX, platoon unblocked			0.81		0.81	0.81
vC, conflicting volume			667		1286	667
vC1, stage 1 conf vol					667	
vC2, stage 2 conf vol					618	
vCu, unblocked vol			477		1237	477
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			87		100	59
cM capacity (veh/h)			883		285	479
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	667	0	503	197		
Volume Left	0	0	115	1		
Volume Right	0	0	0	196		
cSH	1700	1700	883	477		
Volume to Capacity	0.39	0.00	0.13	0.41		
Queue Length 95th (m)	0.0	0.0	3.4	15.2		
Control Delay (s)	0.0	0.0	3.5	17.8		
Lane LOS			А	С		
Approach Delay (s)	0.0		3.5	17.8		
Approach LOS				С		
Intersection Summary						
Average Delay			3.8			
Intersection Capacity Utiliz	ation		43.5%	IC	U Level o	of Service
Analysis Period (min)			15			
			. 5			

	¥	×	×	۲	Ĺ	¥
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		र्भ	4		¥	
Volume (veh/h)	4	778	462	1	20	6
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	4	846	502	1	22	7
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		Raised	Raised			
Median storage veh)		1	1			
Upstream signal (m)		•				
pX, platoon unblocked						
vC, conflicting volume	503				1357	503
vC1, stage 1 conf vol	000				503	000
vC2, stage 2 conf vol					854	
vCu, unblocked vol	503				1357	503
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	7.1				5.4	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	100				93	99
cM capacity (veh/h)	1061				296	569
					270	507
Direction, Lane #	SE 1	NW 1	SW 1			
Volume Total	850	503	28			
Volume Left	4	0	22			
Volume Right	0	1	7			
cSH	1061	1700	333			
Volume to Capacity	0.00	0.30	0.08			
Queue Length 95th (m)	0.1	0.0	2.1			
Control Delay (s)	0.1	0.0	16.8			
Lane LOS	А		С			
Approach Delay (s)	0.1	0.0	16.8			
Approach LOS			С			
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliz	ation		54.1%	IC	CU Level	of Service
Analysis Period (min)			15			
, ··· , /						

Queues 7: Blanca St & University Blvd

	٦	-	\mathbf{F}	∢	←	•	1	Ť	۲	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	141	613	128	107	341	60	92	253	108	221	53	
v/c Ratio	0.33	0.71	0.16	0.52	0.40	0.08	0.21	0.35	0.18	0.20	0.08	
Control Delay	13.2	18.7	2.7	23.0	12.5	3.3	14.0	14.9	13.3	13.0	4.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.2	18.7	2.7	23.0	12.5	3.3	14.0	14.9	13.3	13.0	4.5	
Queue Length 50th (m)	9.3	50.8	0.0	7.9	23.3	0.0	6.5	19.2	7.6	8.2	0.0	
Queue Length 95th (m)	20.6	84.0	7.1	#26.5	40.0	4.9	15.2	34.3	16.4	14.5	5.4	
Internal Link Dist (m)		1111.2			86.8			126.9		80.4		
Turn Bay Length (m)	50.0		10.0						10.0		10.0	
Base Capacity (vph)	425	863	803	206	863	766	443	721	613	1120	646	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.33	0.71	0.16	0.52	0.40	0.08	0.21	0.35	0.18	0.20	0.08	
Intersection Summary												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	۶	-	\mathbf{i}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•	1	ľ	•	1	ľ	•	1			1
Volume (vph)	130	564	118	98	314	55	85	233	99	59	144	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601		3527	1601
Flt Permitted	0.49	1.00	1.00	0.24	1.00	1.00	0.61	1.00	1.00		0.82	1.00
Satd. Flow (perm)	929	1883	1601	451	1883	1601	1156	1883	1601		2922	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	141	613	128	107	341	60	92	253	108	64	157	53
RTOR Reduction (vph)	0	0	69	0	0	33	0	0	0	0	0	33
Lane Group Flow (vph)	141	613	59	107	341	28	92	253	108	0	221	20
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	27.5	27.5	27.5	27.5	27.5	27.5	23.0	23.0	23.0		23.0	23.0
Effective Green, g (s)	27.5	27.5	27.5	27.5	27.5	27.5	23.0	23.0	23.0		23.0	23.0
Actuated g/C Ratio	0.46	0.46	0.46	0.46	0.46	0.46	0.38	0.38	0.38		0.38	0.38
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Grp Cap (vph)	425	863	733	206	863	733	443	721	613		1120	613
v/s Ratio Prot		c0.33			0.18			c0.13				
v/s Ratio Perm	0.15		0.04	0.24		0.02	0.08		0.07		0.08	0.01
v/c Ratio	0.33	0.71	0.08	0.52	0.40	0.04	0.21	0.35	0.18		0.20	0.03
Uniform Delay, d1	10.4	13.1	9.1	11.6	10.7	9.0	12.4	13.2	12.2		12.3	11.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2	2.1	4.9	0.2	9.1	1.4	0.1	1.1	1.3	0.6		0.4	0.1
Delay (s)	12.5	18.0	9.4	20.6	12.1	9.1	13.5	14.5	12.9		12.7	11.7
Level of Service	В	В	А	С	В	А	В	В	В		В	В
Approach Delay (s)		15.8			13.5			13.9			12.5	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.4	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.55									
Actuated Cycle Length (s)			60.0	S	um of lost	time (s)			9.5			
Intersection Capacity Utilizat	tion		68.9%	IC	U Level o	of Service	;		С			
Analysis Period (min)			15									

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	٦	-	\mathbf{F}	∢	←	*	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	6	603	15	5	328	26	19	20	4	20	43	12
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	655	16	5	357	28	21	22	4	22	47	13
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	385			672			1095	1072	664	1073	1066	371
vC1, stage 1 conf vol							677	677		382	382	
vC2, stage 2 conf vol							418	396		692	685	
vCu, unblocked vol	385			672			1095	1072	664	1073	1066	371
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			93	93	99	93	86	98
cM capacity (veh/h)	1174			919			297	330	461	302	329	675
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	678	390	47	82								
Volume Left	7	5	21	22								
Volume Right	16	28	4	13								
cSH	1174	919	322	350								
Volume to Capacity	0.01	0.01	0.14	0.23								
Queue Length 95th (m)	0.1	0.1	3.8	6.8								
Control Delay (s)	0.2	0.2	18.1	18.4								
Lane LOS	А	А	С	С								
Approach Delay (s)	0.2	0.2	18.1	18.4								
Approach LOS			С	С								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utiliza	ation		47.3%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

Queues 1: Wesbrook Mall & Thunderbird Blvd

	≯	-	\mathbf{F}	4	+	1	t	1	Ļ	∢	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	118	123	30	134	160	320	766	44	329	182	
v/c Ratio	0.32	0.20	0.06	0.59	0.47	0.63	0.80	0.28	0.66	0.33	
Control Delay	20.8	19.4	6.6	42.6	30.6	20.0	25.8	31.7	35.3	6.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.8	19.4	6.6	42.6	30.6	20.0	25.8	31.7	35.3	6.3	
Queue Length 50th (m)	12.9	13.4	0.0	20.0	19.6	28.6	94.2	5.5	46.2	0.0	
Queue Length 95th (m)	21.5	22.1	4.3	33.1	32.7	48.7	#148.6	14.5	72.5	11.5	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	384	1098	946	490	704	517	1023	179	555	600	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.31	0.11	0.03	0.27	0.23	0.62	0.75	0.25	0.59	0.30	
Intersection Summary											

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

	٦	-	*	4	+	•	•	Ť	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑	1	<u>۲</u>	4		<u> </u>	4		<u>٦</u>	↑	1
Volume (vph)	97	101	25	110	90	41	262	463	165	36	270	149
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.95		1.00	0.96		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1795		1789	1809		1789	1883	1601
Flt Permitted	0.45	1.00	1.00	0.68	1.00		0.29	1.00		0.32	1.00	1.00
Satd. Flow (perm)	842	1883	1601	1277	1795		544	1809		607	1883	1601
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	118	123	30	134	110	50	320	565	201	44	329	182
RTOR Reduction (vph)	0	0	20	0	20	0	0	11	0	0	0	134
Lane Group Flow (vph)	118	123	10	134	140	0	320	755	0	44	329	48
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	26.7	26.7	26.7	14.0	14.0		40.8	40.8		21.0	21.0	21.0
Effective Green, g (s)	26.7	26.7	26.7	14.0	14.0		40.8	40.8		21.0	21.0	21.0
Actuated g/C Ratio	0.34	0.34	0.34	0.18	0.18		0.51	0.51		0.26	0.26	0.26
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	361	632	538	225	316		497	928		160	497	423
v/s Ratio Prot	c0.03	0.07			0.08		0.11	c0.42			0.17	
v/s Ratio Perm	0.08		0.01	c0.10			0.22			0.07		0.03
v/c Ratio	0.33	0.19	0.02	0.60	0.44		0.64	0.81		0.28	0.66	0.11
Uniform Delay, d1	19.1	18.8	17.6	30.1	29.3		13.0	16.2		23.2	26.1	22.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.5	0.2	0.0	4.2	1.0		2.9	5.8		1.3	3.6	0.2
Delay (s)	19.6	18.9	17.7	34.3	30.3		15.9	22.0		24.5	29.7	22.4
Level of Service	В	В	В	С	С		В	С		С	С	С
Approach Delay (s)		19.1			32.1			20.2			26.9	
Approach LOS		В			С			С			С	
Intersection Summary												
HCM Average Control Dela			23.3	H	CM Level	of Servic	ce		С			
HCM Volume to Capacity r	atio		0.72									
Actuated Cycle Length (s)			79.5		um of lost	• • •			18.1			
Intersection Capacity Utilization	ation		75.4%	IC	U Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

	→	•	-	•	•	t	-	1	Ţ
Lane Group	EBT	• WBL	WBT	WBR	NBL	NBT	N BR	SBL	• SBT
Lane Group Flow (vph)	61	258	265	339	28	462	148	166	423
v/c Ratio	0.14	0.44	0.39	0.40	0.05	0.52	0.29	0.33	0.30
Control Delay	18.4	15.2	14.4	3.0	12.4	25.5	6.8	14.0	18.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.4	15.2	14.4	3.0	12.4	25.5	6.8	14.0	18.3
Queue Length 50th (m)	4.4	20.3	20.8	0.0	2.1	28.8	0.0	13.5	19.1
Queue Length 95th (m)	12.6	35.1	35.7	8.6	5.8	41.2	10.3	23.2	35.4
Internal Link Dist (m)	106.7		487.7			585.5			116.0
Turn Bay Length (m)		40.0			25.0		50.0	70.0	
Base Capacity (vph)	619	697	1230	1276	756	1214	641	714	1477
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.37	0.22	0.27	0.04	0.38	0.23	0.23	0.29
Intersection Summary									

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	۶	+	•	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4)		- ሽ	र्भ	1	- ሽ	- ††	1	- ሽ	∱ ⊅	
Volume (vph)	1	33	16	307	122	278	23	379	121	136	339	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.98	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1799		1700	1751	1601	1789	3579	1601	1789	3566	
Flt Permitted		0.99		0.60	0.90	1.00	0.51	1.00	1.00	0.33	1.00	
Satd. Flow (perm)		1786		1071	1609	1601	951	3579	1601	617	3566	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	1	40	20	374	149	339	28	462	148	166	413	10
RTOR Reduction (vph)	0	18	0	0	0	200	0	0	109	0	1	0
Lane Group Flow (vph)	0	43	0	258	265	139	28	462	39	166	422	0
Turn Type	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		7.9		27.6	27.6	27.6	21.2	17.7	17.7	31.7	25.2	
Effective Green, g (s)		7.9		27.6	27.6	27.6	21.2	17.7	17.7	31.7	25.2	
Actuated g/C Ratio		0.12		0.41	0.41	0.41	0.32	0.26	0.26	0.47	0.37	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		210		586	693	657	343	941	421	482	1335	
v/s Ratio Prot				c0.10	0.09		0.00	c0.13		c0.06	0.12	
v/s Ratio Perm		0.02		c0.08	0.07	0.09	0.02		0.02	0.11		
v/c Ratio		0.21		0.44	0.38	0.21	0.08	0.49	0.09	0.34	0.32	
Uniform Delay, d1		26.9		14.0	13.9	12.8	16.0	21.0	18.7	10.8	14.9	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.4		0.4	0.3	0.1	0.1	0.1	0.0	0.4	0.1	
Delay (s)		27.2		14.4	14.1	12.9	16.1	21.1	18.8	11.2	15.0	
Level of Service		С		В	B	В	В	С	В	В	В	_
Approach Delay (s)		27.2			13.7			20.4			14.0	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM Average Control Delay			16.2	Н	CM Leve	of Servi	се		В			
HCM Volume to Capacity ratio			0.43									
Actuated Cycle Length (s)			67.3		um of los				11.0			
Intersection Capacity Utilization	۱		52.2%	IC	U Level	of Service	9		А			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	→	+	1	Ļ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	529	879	186	103
v/c Ratio	0.42	0.68	0.49	0.26
Control Delay	6.2	10.6	22.8	18.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	6.2	10.6	22.8	18.0
Queue Length 50th (m)	18.7	44.9	13.3	6.4
Queue Length 95th (m)	35.9	81.4	29.7	16.8
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1449	1486	559	589
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.37	0.59	0.33	0.17
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۲	+	*	4	Ļ	•	•	Ť	*	*	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	6	358	70	1	711	9	60	93	0	20	57	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.98			1.00			1.00			0.99	
Flt Protected		1.00			1.00			0.98			0.99	
Satd. Flow (prot)		1841			1880			1847			1840	
Flt Permitted		0.99			1.00			0.87			0.92	
Satd. Flow (perm)		1826			1880			1643			1716	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	7	437	85	1	867	11	73	113	0	24	70	9
RTOR Reduction (vph)	0	11	0	0	1	0	0	0	0	0	7	0
Lane Group Flow (vph)	0	518	0	0	878	0	0	186	0	0	96	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		31.0			31.0			8.8			8.8	
Effective Green, g (s)		31.0			31.0			8.8			8.8	
Actuated g/C Ratio		0.65			0.65			0.18			0.18	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1184			1219			302			316	
v/s Ratio Prot												
v/s Ratio Perm		0.28			0.47			c0.11			0.06	
v/c Ratio		0.44			0.72			0.62			0.31	
Uniform Delay, d1		4.1			5.5			17.9			16.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.3			2.1			3.7			0.5	
Delay (s)		4.4			7.7			21.6			17.4	
Level of Service		А			А			С			В	
Approach Delay (s)		4.4			7.7			21.6			17.4	
Approach LOS		А			А			С			В	
Intersection Summary												
HCM Average Control Delay			8.8	Н	CM Level	of Servic	e		А			
HCM Volume to Capacity ratio			0.70									
Actuated Cycle Length (s)			47.8	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization			58.9%			of Service	<u>!</u>		В			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{F}	∢	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			÷			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	59	22	50	50	0	26	150	32	7	123	4
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	2	72	27	61	61	0	32	183	39	9	150	5
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	101	122	254	163								
Volume Left (vph)	2	61	32	9								
Volume Right (vph)	27	0	39	5								
Hadj (s)	-0.12	0.13	-0.03	0.03								
Departure Headway (s)	5.0	5.2	4.7	4.8								
Degree Utilization, x	0.14	0.18	0.33	0.22								
Capacity (veh/h)	652	631	734	697								
Control Delay (s)	8.8	9.3	9.9	9.2								
Approach Delay (s)	8.8	9.3	9.9	9.2								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			9.4									
HCM Level of Service			А									
Intersection Capacity Utiliza	tion		37.9%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	-*	7	-	•	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		Ä	Y	
Volume (veh/h)	369	0	100	705	4	115
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	450	0	122	860	5	140
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139			139		
pX, platoon unblocked			0.91		0.58	0.91
vC, conflicting volume			450		1554	450
vC1, stage 1 conf vol					450	
vC2, stage 2 conf vol					1104	
vCu, unblocked vol			351		1259	351
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			89		97	78
cM capacity (veh/h)			1104		181	633
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	450	0	982	145		
Volume Left	0	0	122	5		
Volume Right	0	0	0	140		
cSH	1700	1700	1104	584		
Volume to Capacity	0.26	0.00	0.11	0.25		
Queue Length 95th (m)	0.0	0.0	2.8	7.4		
Control Delay (s)	0.0	0.0	2.8	13.2		
Lane LOS			А	В		
Approach Delay (s)	0.0		2.8	13.2		
Approach LOS				В		
Intersection Summary						
Average Delay			2.9			
Intersection Capacity Utilization	ation		58.6%	IC	U Level o	of Service
Analysis Period (min)			15			

Queues 6: Road A & University Blvd

	4	\mathbf{x}	-	×	*	*
Lane Group	SEL	SET	NWL	NWT	NET	SWT
Lane Group Flow (vph)	20	564	209	981	177	17
v/c Ratio	0.07	0.39	0.34	0.69	0.47	0.09
Control Delay	3.6	4.3	5.4	8.4	10.2	17.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.6	4.3	5.4	8.4	10.2	17.1
Queue Length 50th (m)	0.4	13.9	4.8	35.0	1.4	0.7
Queue Length 95th (m)	2.2	32.0	15.2	79.7	12.0	4.6
Internal Link Dist (m)		114.7		295.5	123.5	55.5
Turn Bay Length (m)	30.0		50.0			
Base Capacity (vph)	305	1531	650	1526	551	340
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.37	0.32	0.64	0.32	0.05
Intersection Summary						

HCM Signalized Intersection Capacity Analysis 6: Road A & University Blvd

	4	×	2	ŗ	×	۲	3	×	7	í,	*	×
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦	eî 👘		<u>۲</u>	4			4			4	
Volume (vph)	16	461	2	171	783	21	15	0	130	8	0	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.88			0.94	
Flt Protected	0.95	1.00		0.95	1.00			0.99			0.97	
Satd. Flow (prot)	1789	1882		1789	1876			1647			1728	
Flt Permitted	0.20	1.00		0.42	1.00			0.96			0.69	
Satd. Flow (perm)	375	1882		799	1876			1590			1222	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	20	562	2	209	955	26	18	0	159	10	0	7
RTOR Reduction (vph)	0	0	0	0	1	0	0	141	0	0	6	0
Lane Group Flow (vph)	20	564	0	209	980	0	0	36	0	0	11	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	35.1	35.1		35.1	35.1			5.6			5.6	
Effective Green, g (s)	35.1	35.1		35.1	35.1			5.6			5.6	
Actuated g/C Ratio	0.72	0.72		0.72	0.72			0.11			0.11	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	270	1356		576	1352			183			141	
v/s Ratio Prot		0.30			c0.52							
v/s Ratio Perm	0.05			0.26				c0.02			0.01	
v/c Ratio	0.07	0.42		0.36	0.72			0.20			0.08	
Uniform Delay, d1	2.0	2.7		2.6	4.0			19.5			19.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.1	0.2		0.4	2.0			0.5			0.2	
Delay (s)	2.1	2.9		3.0	5.9			20.1			19.5	
Level of Service	А	А		А	А			С			В	
Approach Delay (s)		2.9			5.4			20.1			19.5	
Approach LOS		А			А			С			В	
Intersection Summary												
HCM Average Control Delay			6.1	Н	CM Level	of Servic	е		А			
HCM Volume to Capacity rat	io		0.65									
Actuated Cycle Length (s)			48.7		um of lost				8.0			
Intersection Capacity Utilizati	ion		64.6%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 7: Blanca St & University Blvd

	٦	-	$\mathbf{\hat{z}}$	∢	←	*	•	Ť	۲	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	148	605	165	137	910	90	213	271	117	317	218	
v/c Ratio	1.00	0.55	0.17	0.37	0.83	0.09	0.79	0.56	0.29	0.45	0.41	
Control Delay	96.6	10.0	3.6	10.3	18.2	2.3	47.7	27.5	23.3	23.7	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	96.6	10.0	3.6	10.3	18.2	2.3	47.7	27.5	23.3	23.7	10.4	
Queue Length 50th (m)	15.9	39.5	3.8	7.8	78.3	0.7	26.2	31.1	12.4	18.5	6.3	
Queue Length 95th (m)	#45.1	53.4	8.8	15.6	102.9	4.4	#51.4	46.9	22.6	26.4	18.1	
Internal Link Dist (m)		1111.2			86.8			126.9		80.4		
Turn Bay Length (m)	50.0		10.0			35.0			10.0		10.0	
Base Capacity (vph)	177	1322	1149	443	1322	1146	307	548	465	801	576	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.84	0.46	0.14	0.31	0.69	0.08	0.69	0.49	0.25	0.40	0.38	
Intersection Summary												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	≯	+	7	4	+	•	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻ	↑	1	ሻ	↑	1			1
Volume (vph)	121	496	135	112	746	74	175	222	96	56	204	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601		3541	1601
Flt Permitted	0.13	1.00	1.00	0.34	1.00	1.00	0.56	1.00	1.00		0.77	1.00
Satd. Flow (perm)	253	1883	1601	631	1883	1601	1054	1883	1601		2754	1601
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	148	605	165	137	910	90	213	271	117	68	249	218
RTOR Reduction (vph)	0	0	34	0	0	30	0	0	0	0	0	116
Lane Group Flow (vph)	148	605	131	137	910	60	213	271	117	0	317	102
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		2			6			4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	36.9	36.9	36.9	36.9	36.9	36.9	16.2	16.2	16.2		16.2	16.2
Effective Green, g (s)	36.9	36.9	36.9	36.9	36.9	36.9	16.2	16.2	16.2		16.2	16.2
Actuated g/C Ratio	0.59	0.59	0.59	0.59	0.59	0.59	0.26	0.26	0.26		0.26	0.26
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	149	1110	944	372	1110	944	273	487	414		713	414
v/s Ratio Prot		0.32			0.48			0.14				
v/s Ratio Perm	c0.58		0.08	0.22		0.04	c0.20		0.07		0.12	0.06
v/c Ratio	0.99	0.55	0.14	0.37	0.82	0.06	0.78	0.56	0.28		0.44	0.25
Uniform Delay, d1	12.7	7.8	5.7	6.7	10.2	5.5	21.5	20.1	18.6		19.4	18.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2	71.4	0.6	0.1	0.6	4.8	0.0	13.4	1.4	0.4		0.4	0.3
Delay (s)	84.1	8.3	5.8	7.4	15.1	5.5	35.0	21.5	18.9		19.9	18.7
Level of Service	F	А	А	А	В	А	С	С	В		В	В
Approach Delay (s)		20.1			13.4			25.8			19.4	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM Average Control Dela	ıy		18.6	Н	CM Level	of Servic	e		В			
HCM Volume to Capacity ra	atio		0.93									
Actuated Cycle Length (s)			62.6	S	um of losi	t time (s)			9.5			
Intersection Capacity Utiliza	ation		80.7%	IC	U Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

	4	×	1	1	1	.↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î			र्भ	
Volume (veh/h)	101	30	194	70	14	175	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	
Hourly flow rate (vph)	123	37	237	85	17	213	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	527	279			322		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	527	279			322		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	76	95			99		
cM capacity (veh/h)	505	760			1238		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	160	322	230				
Volume Left	123	0	17				
Volume Right	37	85	0				
cSH	547	1700	1238				
Volume to Capacity	0.29	0.19	0.01				
Queue Length 95th (m)	9.2	0.0	0.3				
Control Delay (s)	14.3	0.0	0.7				
Lane LOS	В		А				
Approach Delay (s)	14.3	0.0	0.7				
Approach LOS	В						
Intersection Summary							
Average Delay			3.4				
Intersection Capacity Utiliz	ation		34.9%	IC	U Level o	f Service	
Analysis Period (min)			15				

	4	×	1	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4Î			र्भ
Volume (veh/h)	71	9	245	48	9	257
Sign Control	Stop	,	Free	10	,	Free
Grade	0%		0%			0%
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	87	11	299	59	11	313
Pedestrians	07	11	277	57	11	313
Lane Width (m)						
• •						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)			Marsa			Mars
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	663	328			357	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	663	328			357	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	79	98			99	
cM capacity (veh/h)	422	713			1201	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	98	357	324			
Volume Left	87	0	11			
Volume Right	11	59	0			
cSH	442	1700	1201			
Volume to Capacity	0.22	0.21	0.01			
Queue Length 95th (m)	6.3	0.21	0.01			
Control Delay (s)	15.4	0.0	0.2			
Lane LOS	13.4 C	0.0	0.4 A			
	15.4	0.0	0.4			
Approach Delay (s)		0.0	0.4			
Approach LOS	С					
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliz	ation		31.9%	IC	U Level of	Service
Analysis Period (min)			15			

	-	\mathbf{r}	•	←	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f.		<u> </u>	†	Y	
Volume (veh/h)	590	7	106	970	0	131
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	720	9	129	1183	0	160
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	319					
pX, platoon unblocked						
vC, conflicting volume			728		2165	724
vC1, stage 1 conf vol					724	
vC2, stage 2 conf vol					1441	
vCu, unblocked vol			728		2165	724
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			85		100	62
cM capacity (veh/h)			875		138	426
Direction, Lane #	EB 1	WB 1	WB 2	NB 1		
Volume Total	728	129	1183	160		
Volume Left	0	129	0	0		
Volume Right	9	0	0	160		
cSH	1700	875	1700	426		
Volume to Capacity	0.43	0.15	0.70	0.38		
Queue Length 95th (m)	0.0	3.9	0.0	13.0		
Control Delay (s)	0.0	9.8	0.0	18.4		
Lane LOS		А		С		
Approach Delay (s)	0.0	1.0		18.4		
Approach LOS				С		
Intersection Summary						
Average Delay			1.9			
Intersection Capacity Utiliz	ation		65.8%	IC	U Level o	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	٦	-	\mathbf{r}	1	-	•	٩.	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Volume (veh/h)	6	358	70	1	711	9	60	93	0	20	57	7
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	7	437	85	1	867	11	73	113	0	24	70	ç
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	878			522			1412	1374	479	1426	1412	873
vC1, stage 1 conf vol							494	494		875	875	
vC2, stage 2 conf vol							918	880		551	537	
vCu, unblocked vol	878			522			1412	1374	479	1426	1412	873
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			100			61	56	100	88	73	98
cM capacity (veh/h)	769			1044			190	258	586	203	255	350
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	529	879	187	102								
Volume Left	7	1	73	24								
Volume Right	85	11	0	9								
cSH	769	1044	226	246								
Volume to Capacity	0.01	0.00	0.83	0.42								
Queue Length 95th (m)	0.2	0.0	47.5	14.7								
Control Delay (s)	0.3	0.0	67.9	29.7								
Lane LOS	А	А	F	D								
Approach Delay (s)	0.3	0.0	67.9	29.7								
Approach LOS			F	D								
Intersection Summary												
Average Delay			9.4									
Intersection Capacity Utiliza	tion		58.9%	IC	CU Level d	of Service			В			
Analysis Period (min)			15									

Queues 1: Wesbrook Mall & Thunderbird Blvd

	٦	-	\mathbf{r}	1	-	1	1	1	Ŧ	<	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	284	76	147	110	89	102	519	67	540	99	
v/c Ratio	0.83	0.13	0.25	0.48	0.26	0.30	0.57	0.23	0.87	0.17	
Control Delay	41.8	16.9	4.6	34.4	15.5	12.8	15.2	23.6	43.3	6.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.8	16.9	4.6	34.4	15.5	12.8	15.2	23.6	43.3	6.5	
Queue Length 50th (m)	28.8	6.8	0.0	13.3	4.3	6.6	42.5	6.6	69.0	0.3	
Queue Length 95th (m)	#62.4	15.5	10.5	28.0	15.6	15.7	79.2	18.3	#146.6	10.7	
Internal Link Dist (m)		131.0			44.8		163.9		585.5		
Turn Bay Length (m)	70.0		50.0	25.0		110.0		55.0		75.0	
Base Capacity (vph)	343	1139	1026	544	732	635	1321	293	620	592	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.83	0.07	0.14	0.20	0.12	0.16	0.39	0.23	0.87	0.17	
Intersection Summary											

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	≯	→	$\mathbf{\hat{z}}$	4	-	•	•	1	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	↑	1	٦	ef 👘		٦	el 🕺		٦	↑	7
Volume (vph)	261	70	135	101	35	47	94	386	91	62	497	91
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.91		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1722		1789	1830		1789	1883	1601
Flt Permitted	0.41	1.00	1.00	0.71	1.00		0.15	1.00		0.47	1.00	1.00
Satd. Flow (perm)	781	1883	1601	1333	1722		277	1830		889	1883	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	284	76	147	110	38	51	102	420	99	67	540	99
RTOR Reduction (vph)	0	0	100	0	44	0	0	8	0	0	0	66
Lane Group Flow (vph)	284	76	47	110	45	0	102	511	0	67	540	33
Turn Type	pm+pt	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	21.6	21.6	21.6	8.9	8.9		33.7	33.7		21.3	21.3	21.3
Effective Green, g (s)	21.6	21.6	21.6	8.9	8.9		33.7	33.7		21.3	21.3	21.3
Actuated g/C Ratio	0.32	0.32	0.32	0.13	0.13		0.50	0.50		0.32	0.32	0.32
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	5.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	4.0		4.0	4.0	4.0
Lane Grp Cap (vph)	350	604	514	176	228		285	916		281	596	507
v/s Ratio Prot	c0.08	0.04			0.03		0.03	c0.28			c0.29	
v/s Ratio Perm	c0.18		0.03	0.08			0.14			0.08		0.02
v/c Ratio	0.81	0.13	0.09	0.62	0.20		0.36	0.56		0.24	0.91	0.07
Uniform Delay, d1	20.1	16.2	16.0	27.6	26.0		12.1	11.6		17.0	22.0	16.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	13.3	0.1	0.1	6.8	0.4		0.8	0.9		0.6	17.7	0.1
Delay (s)	33.4	16.3	16.1	34.4	26.4		12.9	12.5		17.6	39.7	16.1
Level of Service	С	В	В	С	С		В	В		В	D	В
Approach Delay (s)		25.8			30.8			12.6			34.3	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM Average Control Dela			25.2	Н	CM Level	of Servic	ce		С			
HCM Volume to Capacity ra	atio		0.82									
Actuated Cycle Length (s)			67.3	Si	um of lost	time (s)			17.9			
Intersection Capacity Utiliza	ation		70.2%	IC	U Level o	of Service	è		С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 2: Wesbrook Mall & University Blvd

			-		•	ŧ	*	1	Ţ	
	FDT		WDT		NDI		ſ			
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	153	97	102	164	15	401	345	290	418	
v/c Ratio	0.32	0.16	0.14	0.19	0.03	0.43	0.51	0.49	0.24	
Control Delay	25.8	11.5	11.3	2.8	12.1	25.6	6.4	16.7	16.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Delay	25.8	11.5	11.3	2.8	12.1	25.6	6.4	16.7	16.4	
Queue Length 50th (m)	17.1	7.3	7.6	0.0	1.1	25.5	0.0	25.6	18.8	
Queue Length 95th (m)	32.7	15.2	15.8	8.7	4.1	38.5	19.2	43.1	38.4	
nternal Link Dist (m)	106.7		487.7			585.5			116.0	
urn Bay Length (m)		40.0			25.0		50.0	70.0		
ase Capacity (vph)	517	611	914	1028	639	995	694	603	1775	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.16	0.11	0.16	0.02	0.40	0.50	0.48	0.24	
ntersection Summary										

HCM Signalized Intersection Capacity Analysis 2: Wesbrook Mall & University Blvd

	۲	+	*	4	+	*	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	र्भ	1	ሻ	- † †	1	ሻ	↑ 1≽	
Volume (vph)	5	122	14	149	34	151	14	369	317	267	381	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Lane Util. Factor		1.00		0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt		0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	0.97	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1855		1700	1734	1601	1789	3579	1601	1789	3573	
Flt Permitted		0.99		0.39	0.81	1.00	0.51	1.00	1.00	0.39	1.00	
Satd. Flow (perm)		1841		693	1441	1601	956	3579	1601	735	3573	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	133	15	162	37	164	15	401	345	290	414	4
RTOR Reduction (vph)	0	6	0	0	0	103	0	0	247	0	1	0
Lane Group Flow (vph)	0	147	0	97	102	61	15	401	98	290	417	0
Turn Type	Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)		10.7		25.4	25.4	25.4	21.3	19.5	19.5	34.9	30.1	
Effective Green, g (s)		10.7		25.4	25.4	25.4	21.3	19.5	19.5	34.9	30.1	
Actuated g/C Ratio		0.16		0.37	0.37	0.37	0.31	0.29	0.29	0.51	0.44	
Clearance Time (s)		4.0		4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	
Vehicle Extension (s)		2.5		2.5	2.5	2.5	2.5	0.2	0.2	3.0	2.5	
Lane Grp Cap (vph)		288		415	582	595	320	1022	457	567	1575	
v/s Ratio Prot				c0.04	0.03		0.00	0.11		c0.09	0.12	
v/s Ratio Perm		c0.08		0.05	0.04	0.04	0.01		0.06	c0.17		
v/c Ratio		0.51		0.23	0.18	0.10	0.05	0.39	0.22	0.51	0.27	
Uniform Delay, d1		26.4		15.0	14.4	14.0	16.3	19.6	18.6	10.1	12.1	
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.1		0.2	0.1	0.1	0.0	0.1	0.1	0.8	0.1	
Delay (s)		27.5		15.2	14.5	14.1	16.4	19.7	18.7	10.8	12.2	
Level of Service		С		В	В	В	В	В	В	В	В	
Approach Delay (s)		27.5			14.5			19.2			11.6	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM Average Control Delay			16.3	Н	CM Leve	of Servi	се		В			
HCM Volume to Capacity ratio			0.45									
Actuated Cycle Length (s)			68.3		um of los				11.0			
Intersection Capacity Utilization	1		65.6%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: Acadia Rd & University Blvd

	-	+	1	ţ
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	726	390	79	93
v/c Ratio	0.51	0.27	0.24	0.27
Control Delay	5.7	3.9	16.6	15.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	5.7	3.9	16.6	15.9
Queue Length 50th (m)	22.6	9.5	4.2	4.5
Queue Length 95th (m)	55.6	23.2	15.0	16.2
Internal Link Dist (m)	487.7	114.8	84.4	98.2
Turn Bay Length (m)				
Base Capacity (vph)	1721	1727	630	640
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.42	0.23	0.13	0.15
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	۲	+	*	4	Ļ	•	•	1	*	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Volume (vph)	6	592	70	5	336	18	34	35	4	20	53	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.99			0.99			0.99			0.98	
Flt Protected		1.00			1.00			0.98			0.99	
Satd. Flow (prot)		1856			1869			1828			1826	
Flt Permitted		1.00			0.99			0.88			0.89	
Satd. Flow (perm)		1851			1858			1642			1654	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	7	643	76	5	365	20	37	38	4	22	58	13
RTOR Reduction (vph)	0	6	0	0	3	0	0	4	0	0	12	0
Lane Group Flow (vph)	0	720	0	0	387	0	0	75	0	0	81	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		27.5			27.5			4.6			4.6	
Effective Green, g (s)		27.5			27.5			4.6			4.6	
Actuated g/C Ratio		0.69			0.69			0.11			0.11	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1269			1274			188			190	
v/s Ratio Prot												
v/s Ratio Perm		c0.39			0.21			0.05			c0.05	
v/c Ratio		0.57			0.30			0.40			0.43	
Uniform Delay, d1		3.2			2.5			16.5			16.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.6			0.1			1.4			1.6	
Delay (s)		3.8			2.6			17.9			18.1	
Level of Service		А			А			В			В	
Approach Delay (s)		3.8			2.6			17.9			18.1	
Approach LOS		А			А			В			В	
Intersection Summary												
HCM Average Control Delay			5.4	Н	CM Leve	of Servic	e		А			
HCM Volume to Capacity ratio			0.55									
Actuated Cycle Length (s)			40.1		um of los				8.0			
Intersection Capacity Utilization	1		52. 9 %	IC	CU Level	of Service	!		А			
Analysis Period (min)			15									
c Critical Lane Group												

۶	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ŧ	~
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	\$			\$			\$			\$	
	Stop			Stop			Stop			Stop	
1	64	21	24	28	0	21	60	43	12	97	5
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
1	70	23	26	30	0	23	65	47	13	105	5
EB 1	WB 1	NB 1	SB 1								
93	57	135	124								
1	26	23	13								
23	0	47	5								
-0.11	0.13	-0.14	0.03								
4.4	4.7	4.3	4.4								
0.12	0.07	0.16	0.15								
753	708	807	770								
8.0	8.1	8.1	8.2								
8.0	8.1	8.1	8.2								
А	А	А	А								
		8.1									
		А									
on		27.0%	IC	U Level o	of Service			А			
		15									
	1 0.92 1 EB 1 93 1 23 -0.11 4.4 0.12 753 8.0 8.0 8.0 A	♣ Stop 1 64 0.92 0.92 1 70 EB 1 WB 1 93 57 1 26 23 0 -0.11 0.13 4.4 4.7 0.12 0.07 753 708 8.0 8.1 8.0 8.1 A A	Stop 1 64 21 0.92 0.92 0.92 1 70 23 EB 1 WB 1 NB 1 93 57 135 1 26 23 23 0 47 -0.11 0.13 -0.14 4.4 4.7 4.3 0.12 0.07 0.16 753 708 807 8.0 8.1 8.1 A A A A A A 0.12 0.07 0.16 753 708 807 8.0 8.1 8.1 A A A A A A A A A	Stop 1 64 21 24 0.92 0.92 0.92 0.92 1 70 23 26 EB 1 WB 1 NB 1 SB 1 93 57 135 124 1 26 23 13 23 0 47 5 -0.11 0.13 -0.14 0.03 4.4 4.7 4.3 4.4 0.12 0.07 0.16 0.15 753 708 807 770 8.0 8.1 8.1 8.2 A A A A A A A A M A A A	\clubsuit \bigstar Stop Stop 1 64 21 24 28 0.92 0.92 0.92 0.92 0.92 1 70 23 26 30 EB 1 WB 1 NB 1 SB 1 93 57 135 124 1 26 23 13 23 0 47 5 -0.11 0.13 -0.14 0.03 4.4 4.7 4.3 4.4 0.12 0.07 0.16 0.15 753 708 807 770 8.0 8.1 8.1 8.2 A A A A A A A A M A A A M A A A M A A A M A A A <tr tbody=""></tr>	4 4 Stop Stop 1 64 21 24 28 0 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 70 23 26 30 0 EB 1 WB 1 NB 1 SB 1 93 57 135 124 1 26 23 13 23 0 47 5 -0.11 0.13 -0.14 0.03 4.4 4.7 4.3 4.4 0.12 0.07 0.16 0.15 753 708 807 770 8.0 8.1 8.1 8.2 A A A A A A A A A A A A	4 $5top$ $5top$ 1 64 21 24 28 0 21 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 70 23 26 30 0 23 EB 1 WB 1 NB 1 SB 1 SB 1 93 57 135 124 1 26 23 13 23 0 47 5 - - - - - -0.11 0.13 -0.14 0.03 - - - - - -0.11 0.13 -0.14 0.03 -	\bullet \bullet \bullet \bullet \bullet \bullet Stop Stop Stop Stop Stop 1 64 21 24 28 0 21 60 0.92 0	Stop Stop Stop 1 64 21 24 28 0 21 60 43 0.92 0	A A A A Stop Stop Stop Stop 1 64 21 24 28 0 21 60 43 12 0.92	Stop Stop Stop Stop Stop Stop 1 64 21 24 28 0 21 60 43 12 97 0.92

	-*	7	~	•	•	~
Movement	EBR	EBR2	NWL2	NWL	NEL	NER
Lane Configurations	1	1		Ä	Y	
Volume (veh/h)	603	0	39	357	1	125
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	655	0	42	388	1	136
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	139			139		
pX, platoon unblocked			0.81		0.84	0.81
vC, conflicting volume			655		1128	655
vC1, stage 1 conf vol					655	
vC2, stage 2 conf vol					473	
vCu, unblocked vol			463		930	463
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			95		100	72
cM capacity (veh/h)			894		360	488
Direction, Lane #	EB 1	EB 2	NW 1	NE 1		
Volume Total	655	0	430	137		
Volume Left	0	0	42	1		
Volume Right	0	0	0	136		
cSH	1700	1700	894	486		
Volume to Capacity	0.39	0.00	0.05	0.28		
Queue Length 95th (m)	0.0	0.0	1.1	8.7		
Control Delay (s)	0.0	0.0	1.4	15.3		
Lane LOS			А	С		
Approach Delay (s)	0.0		1.4	15.3		
Approach LOS				С		
Intersection Summary						
Average Delay			2.2			
Intersection Capacity Utiliz	ation		40.7%	IC	U Level o	of Service
Analysis Period (min)			15			

Queues 6: Road A & University Blvd

	4	\mathbf{x}	1	×	*	*
Lane Group	SEL	SET	NWL	NWT	NET	SWT
Lane Group Flow (vph)	4	774	160	421	137	29
v/c Ratio	0.01	0.55	0.38	0.30	0.38	0.13
Control Delay	2.8	5.9	6.9	3.7	8.9	16.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	2.8	5.9	6.9	3.7	8.9	16.6
Queue Length 50th (m)	0.1	23.0	3.9	9.4	0.7	1.5
Queue Length 95th (m)	0.7	56.8	15.6	23.2	11.8	7.0
Internal Link Dist (m)		114.7		295.5	123.5	55.5
Turn Bay Length (m)	30.0		50.0			
Base Capacity (vph)	755	1462	442	1462	758	602
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.53	0.36	0.29	0.18	0.05
Intersection Summary						

HCM Signalized Intersection Capacity Analysis 6: Road A & University Blvd

	4	\mathbf{x}	2	~	×	ť	3	×	~	í,	×	*~
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	4Î		٦.	4			4			4	
Volume (vph)	4	710	2	147	386	1	9	0	117	20	0	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.87			0.97	
Flt Protected	0.95	1.00		0.95	1.00			1.00			0.96	
Satd. Flow (prot)	1789	1883		1789	1883			1642			1755	
Flt Permitted	0.52	1.00		0.30	1.00			0.97			0.77	
Satd. Flow (perm)	972	1883		568	1883			1600			1398	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	4	772	2	160	420	1	10	0	127	22	0	7
RTOR Reduction (vph)	0	0	0	0	0	0	0	112	0	0	6	0
Lane Group Flow (vph)	4	774	0	160	421	0	0	25	0	0	23	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4			8		
Actuated Green, G (s)	31.4	31.4		31.4	31.4			5.2			5.2	
Effective Green, g (s)	31.4	31.4		31.4	31.4			5.2			5.2	
Actuated g/C Ratio	0.70	0.70		0.70	0.70			0.12			0.12	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	684	1326		400	1326			187			163	
v/s Ratio Prot		c0.41			0.22							
v/s Ratio Perm	0.00			0.28				0.02			c0.02	
v/c Ratio	0.01	0.58		0.40	0.32			0.13			0.14	
Uniform Delay, d1	2.0	3.3		2.7	2.5			17.7			17.7	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.0	0.7		0.7	0.1			0.3			0.4	
Delay (s)	2.0	4.0		3.4	2.7			18.0			18.1	
Level of Service	А	А		А	А			В			В	
Approach Delay (s)		4.0			2.9			18.0			18.1	
Approach LOS		А			А			В			В	
Intersection Summary												
HCM Average Control Delay			5.1	H	CM Level	of Servic	e		А			
HCM Volume to Capacity rati	0		0.52									
Actuated Cycle Length (s)			44.6	Si	um of losi	t time (s)			8.0			
Intersection Capacity Utilizati	on		63.8%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 7: Blanca St & University Blvd

	٠	-	\mathbf{i}	∢	+	•	1	Ť	1	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	160	698	147	107	504	60	128	253	108	221	89	
v/c Ratio	0.61	0.85	0.20	0.82	0.62	0.08	0.28	0.34	0.17	0.19	0.13	
Control Delay	24.0	26.9	7.3	64.3	16.3	3.4	14.8	14.4	13.1	12.6	3.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.0	26.9	7.3	64.3	16.3	3.4	14.8	14.4	13.1	12.6	3.9	
Queue Length 50th (m)	12.2	62.1	5.5	9.4	38.5	0.0	9.4	19.2	7.6	8.2	0.0	
Queue Length 95th (m)	#35.4	#118.4	14.1	#34.7	64.0	4.9	20.4	34.3	16.4	14.5	6.9	
Internal Link Dist (m)		1111.2			86.8			126.9		80.4		
Turn Bay Length (m)	50.0		10.0			35.0			10.0		10.0	
Base Capacity (vph)	291	901	794	143	901	797	463	754	641	1173	695	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.55	0.77	0.19	0.75	0.56	0.08	0.28	0.34	0.17	0.19	0.13	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 7: Blanca St & University Blvd

	۶	-	\mathbf{F}	∢	←	*	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	۲.	↑	1	٦	•	1		- 41†	1
Volume (vph)	147	642	135	98	464	55	118	233	99	59	144	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601		3527	1601
Flt Permitted	0.32	1.00	1.00	0.16	1.00	1.00	0.61	1.00	1.00		0.82	1.00
Satd. Flow (perm)	607	1883	1601	300	1883	1601	1156	1883	1601		2930	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	160	698	147	107	504	60	128	253	108	64	157	89
RTOR Reduction (vph)	0	0	31	0	0	34	0	0	0	0	0	53
Lane Group Flow (vph)	160	698	116	107	504	26	128	253	108	0	221	36
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	25.1	25.1	25.1	25.1	25.1	25.1	23.1	23.1	23.1		23.1	23.1
Effective Green, g (s)	25.1	25.1	25.1	25.1	25.1	25.1	23.1	23.1	23.1		23.1	23.1
Actuated g/C Ratio	0.44	0.44	0.44	0.44	0.44	0.44	0.40	0.40	0.40		0.40	0.40
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	264	819	696	131	819	696	463	754	641		1173	641
v/s Ratio Prot		c0.37			0.27			c0.13				
v/s Ratio Perm	0.26		0.07	0.36		0.02	0.11		0.07		0.08	0.02
v/c Ratio	0.61	0.85	0.17	0.82	0.62	0.04	0.28	0.34	0.17		0.19	0.06
Uniform Delay, d1	12.5	14.6	9.9	14.3	12.6	9.4	11.7	12.0	11.1		11.2	10.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2	3.9	8.5	0.1	31.0	1.4	0.0	1.5	1.2	0.6		0.4	0.2
Delay (s)	16.4	23.2	10.0	45.3	14.0	9.4	13.1	13.2	11.7		11.6	10.8
Level of Service	В	С	В	D	В	А	В	В	В		В	В
Approach Delay (s)		20.2			18.5			12.8			11.3	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM Average Control Delay			17.2	Н	CM Leve	l of Servic	e		В			
HCM Volume to Capacity rat	io		0.60									
Actuated Cycle Length (s)			57.7		um of los				9.5			
Intersection Capacity Utilizat	ion		73.0%	IC	U Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	<	*	1	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		¢Î			بار
Volume (veh/h)	49	45	107	88	11	111
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	53	49	116	96	12	121
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	309	164			212	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	309	164			212	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	92	94			99	
cM capacity (veh/h)	678	880			1358	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	102	212	133			
Volume Left	53	0	12			
Volume Right	49	96	0			
cSH	762	1700	1358			
Volume to Capacity	0.13	0.12	0.01			
Queue Length 95th (m)	3.5	0.0	0.2			
Control Delay (s)	10.5	0.0	0.8			
Lane LOS	В		А			
Approach Delay (s)	10.5	0.0	0.8			
Approach LOS	В					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utiliz	zation		27.1%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

	4	•	1	1	1	۰.		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	I	
Lane Configurations	Y		¢			<u>स</u>	ſ	
Volume (veh/h)	54	6	177	48	14	124		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	59	7	192	52	15	135		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	384	218			245			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	384	218			245			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	90	99			99			
cM capacity (veh/h)	612	821			1322			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	65	245	150					
Volume Left	59	0	15					
Volume Right	7	52	0					
cSH	, 628	1700	1322					
Volume to Capacity	0.10	0.14	0.01					
Queue Length 95th (m)	2.6	0.0	0.3					
Control Delay (s)	11.4	0.0	0.9					
Lane LOS	В	0.0	A					
Approach Delay (s)	11.4	0.0	0.9					
Approach LOS	В							
Intersection Summary								
Average Delay			1.9					
Intersection Capacity Utiliz	ation		28.2%	IC	U Level c	of Service		
Analysis Period (min)			15	- 10	2 201010			
			15					

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,		5	•	¥	
Volume (veh/h)	829	10	143	533	0	72
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	901	11	155	579	0	78
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	319					
pX, platoon unblocked			0.78		0.78	0.78
vC, conflicting volume			912		1797	907
vC1, stage 1 conf vol					907	
vC2, stage 2 conf vol					890	
vCu, unblocked vol			750		1879	743
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)			2.2		3.5	3.3
p0 queue free %			77		100	76
cM capacity (veh/h)			673		175	325
Direction, Lane #	EB 1	WB 1	WB 2	NB 1		
Volume Total	912	155	579	78		
Volume Left	0	155	0	0		
Volume Right	11	0	0	78		
cSH	1700	673	1700	325		
Volume to Capacity	0.54	0.23	0.34	0.24		
Queue Length 95th (m)	0.0	6.7	0.0	7.0		
Control Delay (s)	0.0	11.9	0.0	19.5		
Lane LOS		В		С		
Approach Delay (s)	0.0	2.5		19.5		
Approach LOS				С		
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utiliz	ation		66.6%	IC	U Level o	of Service
Analysis Period (min)			15			
, , , , , , , , , , , , , , , , , , ,						

HCM Unsignalized Intersection Capacity Analysis 3: Acadia Rd & University Blvd

	٦	-	\mathbf{r}	1	-	•	٩.	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$			÷			4			\$	
Volume (veh/h)	6	592	70	5	336	18	34	35	4	20	53	12
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	7	722	85	6	410	22	41	43	5	24	65	15
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	432			807			1259	1223	765	1238	1255	421
vC1, stage 1 conf vol							779	779		433	433	
vC2, stage 2 conf vol							480	444		805	822	
vCu, unblocked vol	432			807			1259	1223	765	1238	1255	421
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			83	85	99	90	77	98
cM capacity (veh/h)	1128			818			248	292	403	245	281	633
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	815	438	89	104								
Volume Left	7	6	41	24								
Volume Right	85	22	5	15								
cSH	1128	818	274	294								
Volume to Capacity	0.01	0.01	0.33	0.35								
Queue Length 95th (m)	0.1	0.2	10.4	11.7								
Control Delay (s)	0.2	0.2	24.4	23.8								
Lane LOS	А	А	С	С								
Approach Delay (s)	0.2	0.2	24.4	23.8								
Approach LOS			С	С								
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utiliza	tion		52.9%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									